Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust
Tóm tắt
This paper studies magnetic properties and composition of granulite-facies rocks of both the Neogene and Archean continental lower crust in the Neogene xenolith-bearing Hannuoba(汉诺坝) alkaline basalt and the exposed lower crustal section in the Archean Huai’an(淮安) terrain (Wayaokou (瓦窑口)-Manjinggou(蔓菁沟 profile), the northern North China Craton. It provides a unique opportunity for a comparative study of magnetic properties and composition of both the Archean and Neogene continental lower crust. We measure magnetic parameters (susceptibility κ and magnetic hysteresis parameters, such as saturation magnetization J
s, saturation isothermal remanent magnetization J
rs, and intrinsic coercivity H
c) of eleven Hannuoba lower crustal xenoliths and nine terrain granulites from the Archean Huai’an terrain. Results indicate that the average values of κ, J
s and J
rs of Archean granulites are 4 122×10−6 SI, 523.1 A/m and 74.9 A/m, respectively, which are generally higher than those of granulite-facies xenoliths (1 657×10−6 SI, 163.9 A/m and 41.9 A/m, respectively). These two types of granulites contain ilmenite, (titano) magnetite, minor hematite and some “magnetic silicates” (clinopyroxene, plagioclase and biotite). The Mg-rich ilmenite in granulite-facies xenolith is relatively higher than that in terrain granulites. We observe a more evolved character as higher magnetic as well as lower Sr/Nd, Cr/Nd, Ni/Nd, Co/Nd and V/Nd ratios in terrain granulites. These differences in magnetic characteristics reflect their different origins and evolutions. The high magnetization of granulites in the Huai’an terrain represents magnetic properties of the Archean continental lower crust, and low magnetization of granulite-facies xenoliths represents magnetic properties of the Cenozoic lower crusts in the northern North China Craton.
Tài liệu tham khảo
Belluso, E., Biino, G., Lanza, R., 1990. New Data on the Rock Magnetism in the Ivrea-Verbano Zone (Northern Italy) and Its Relationships to the Magnetic Anomalies. Tectonophysics, 182(1–2): 79–89
Bohlen, S. R., Mezger, K., 1989. Origin of Granulite Terranes and the Formation of the Lowermost Continental Crust. Science, 244(4902): 326–329 doi:10.1126/science.244.4902.326
Carmichael, R. S., 1984. Handbook of Physical Properties of Rocks. CRC Press, Boca Raton, Florida. II: 246
Davis, K. E., 1981. Magnetite Rods in Plagioclase as the Primary Carrier of Stable NRM in Ocean Floor Gabbros. Earth. Planet. Sci. Lett., 55: 190–198 doi:10.1016/0012-821X
Dunlop, D. J., Őzdemir, Ő., Rancourt, D. G., 2006. Magnetism of Biotite Crystals. Earth Plant. Sci. Lett., 243(3–4): 805–819
Dunlop, D. J., Ozdemir, O., Costanzo-Alvarez, V., 2010. Magnetic Properties of Rocks of the Kapuskasing Uplift (Ontario, Canada) and Origin of Long-Wavelength Magnetic Anomalies. Geophys. J. Int., 183(2): 645–658 doi:10.1111/j.1365-246X.2010.04778.x
Feinberg, J. M., Scott, G. R., Renne, P. R., et al., 2005. Exsolved Magnetite Inclusions in Silicates: Features Determining Their Remanence Behavior. Geology, 33(6): 513–516 doi:10.1130/G21290.1
Frost, B. R., Shive, P. N., 1986. Magnetic Mineralogy of the Lower Continental Crust. J. Geophys. Res., 91(B6): 6513–6521 doi:10.1029/JB091Ib06p06513
Frost, B. R., 1991. Magnetic Petrology: Factors that Control the Occurrence of Magnetite in Crustal Rocks. Rev. Mineral., 25: 489–509
Gao, S., Zhang, B. R., Jin, Z. M., et al., 1998. How Mafic is the Lower Continental Crust? Earth Planet. Sci. Lett., 161(1–4): 101–117 doi:10.1016/S0012-821X(98)00140-X
Gao, S., Kern, H., Liu, Y. S., et al., 2000. Measured and Calculated Seismic Velocities and Densities for Granulites from Xenolith Occurrences and Adjacent Exposed Lower Crustal Sections: A Comparative from the North China Craton. J. Geophys. Res., 105(B8): 18965–18976, doi:10.1029/2000IB900100
Gaspararini, P., Mantovani, M. S. M., Corrado, G., et al., 1979. Depth of Curie Temperature in Continental Shields: A Compositional Boundary? Nature, 278: 845–846 doi:10.1038/278845a0
Gilder, S. A., Le Goff, M., 2008. Systematic Pressure Enhancement of Titanomagnetite Magnetization. Geophys. Res. Lett., 35(10) doi: 10.1029/2008 GL33325
Haggerty, S. E., 1979. The Aeromagnetic Mineralogy of Igneous Rocks. Can. J. Earth Sci., 16: 1281–1293
Haggerty, S. E., Toft, P. B., 1985. Native Iron in the Continental Lower Crust: Petrological and Geophysical Implications. Science, 229: 647–649 doi:10.1126/science.229.4714.647
Holbrook, W. S., Mooney, W. D., Christensen, N. I., 1992. The Seismic Velocity Structure of the Deep Continental Crust. In: Fountain, D. M., Arculus, R., Kay, R., eds., Lower Continental Crust. Elsevier, Amsterdam. 1–43
Kelso, P. R., Banerjeea, S. K., Eyssier, C., 1993. Rock Magnetic Properties of the Amnta Block, Central Australia, and Their Implication for the Interpretation of Long-Wavelength Magnetic Anomalies. J. Geophys. Res., 98(B9): 15987–15999 doi:10.1029/93JB01158
Kern, H., Gao, S., Liu, Q. S., 1996. Seismic Properties and Densities of Middle and Lower Crustal Rocks Exposed along the North China Geoscience Transect. Earth Planet. Sci. Lett., 139(3-4): 439–455 doi:10.1016/0012-821X(95) 00240-D
Kern, H., Jin, Z. M., Gao, S., et al., 2002. Physical Properties of Ultrahigh-Pressure Metamorphic Rocks from the Sulu Terrain, Eastern Central China: Implications for the Seismic Structure at the Donghai (CCSD) Drilling Site. Tectonophysics, 354(3–4): 315–330, doi:10.1016/S0040-1951(02)00339-6
Kletetschka, G., Stout, J. H., 1998. The Origin of Magnetic Anomalies in Lower Crustal Rocks, Labrador. Geophys. Res. Lett., 25(2): 199–202 doi:10.1029/97GL03506
Lebas, M. J., Streckeisen, A. L., 1991. The IUGS Systematics of Igneous Rocks. J. Geol. Soc., London, 148: 825–833 doi:10.1144/gsjgs.148.5.0825
Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of >3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342, doi:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu, Q. S., Gao, S., 1992. Geophysical Properties of the Lower Crustal Granulites from the Qinling Orogenic Belt, China. Tectonophysics, 204(3–4): 401–408 doi:10.1016/0040-1951(92)90318-Z
Liu, Q. S., Gao, S., Liu, Y. S., 2000. Magnetic Structure of the Continental Crust as Revealed by the Wutai-Jinjing Crustal Cross-Section in the North China Craton. J. Geodys., 29: 1–13
Liu, Q. S., Gao, S., Xu, Q. D., 1994. Magnetic Structure of the Dengfeng-Lushan Crustal Cross-Section, Henan. Sci. China (Series B), 37(8): 911–1000
Liu, Q. S., Gao, S., Xu, Q. D., et al., 1996. Magnetic Petrology of Archean Amphibolite-Granulite Facies Rocks from Yangtze Craton, South China. Acta Geophys. Sin., 39(Suppl.): 150–157 (in Chinese with English Abstract)
Liu, Q. S., Liu, Q. S., Zhang, Z. M., et al., 2007. Magnetic Properties of Ultrahigh-Pressure Eclogites Controlled by Retrograde Metamorphism: A Case Study from the ZK 703 Drillhole in Donghai, Eastern China. Phys. Earth Planet. Inter., 160(3–4): 181–191
Liu, Q. S., Liu, Q. S., Liu, Y. S., et al., 2008. Magnetic Study of Mafic Granulite Xenoliths from the Hannuoba Basalt, North China. Geochem. Geophys. Geosyst., 9: 16, doi:10.1029/2008GC001952
Liu, Q. S., Liu, Q. S., Yang, T., et al., 2009. Magnetic Study of the UHP Eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. J. Geophys. Res., 114 doi:10.1029/2008 JB005917
Liu, Q. S., Zeng, Q. L., Zheng, J. P., et al., 2010. Magnetic Properties of Serpentinized Garnet Peridotites from the CCSD Main Hole in the Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China. J. Geophys. Res., 115, doi:10.1029/2009JB000814
Liu, Y. S., 1999. Geochemistry of Lower Crustal Xenoliths from Hannuoba Basalt: Geodynamic Implications: [Dissertation]. China University of Geosciences, Wuhan (in China with English Abstract)
Liu, Y. S., Gao, S., Jin, S. Y., et al., 2001. Geochemistry and Petrogenesis of Lower Crustal Xenoliths from Hannuoba, North China: Implications for the Continental Lower Crustal Composition and Evolution at Convergent Margin. Geochim. Cosmochim. Acta, 65(15): 2589–2604
McEnroe, S. A., Harrison, R. J., Robinson, P., et al., 2001. Effect of Fine-Scale Microstructure in Titanohematite on the Acquisition and Stability of Natural Remanent Magnetization in Granulite Facies Metamorphic Rocks, Southwest Sweden: Implications for Crustal Magnetism. J. Geophys. Res., 106(B12): 30523–30546, doi:10.1029/2001JB000180
McEnroe, S. A., Langenhorst, F., Robinson, P., et al., 2004. What is Magnetic in the Lower Crust? Earth Planet. Sci. Lett., 226(1–2): 175–192
Murthy, G. S., Pätzold, R., Brown, C., 1981. Source of Stable Remanence in Certain Intrusive Rocks. Phy. Earth Planet. Inter., 26(1—2): 72–80
Olesen, O., Henkel, H., Kaada, K. et al., 1997. Petrophysical Properties of a Prograde Amphibolite-Granulite Facies Transition Zone at Sigerfjors, Vesterale, Northern Norway. Tectonophysics, 192: 33–39
Pechersky, D. M., Genshaft, Y. S., 2002. Petromagnetism of the Continental Crust: A Summary of 20th Century Research. Phys. Solid Earth, 38: 4–36
Peters, C., Dekkers, M. J., 2003. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Phys. Chem. Earth, 28(16–19): 659–667
Peters, C., Thompson, R., 1998. Magnetic Identification of Selected Natural Iron Oxides and Sulphides. J. Magn. Magn. Mater., 183(3): 365–374
Piper, J. D. A., Mallik, S. B., Bandyopadhyay, G., et al., 2003. Palaeomagnetic and Rock Magnetic Study of a Deeply Exposed Continental Section in the Charnockite Belt of Southern India: Implications to Crustal Magnetization and Palaeoproterozoic Continental Nuclei. Precambrian Res., 121(3–4): 185–219
Ramachandran, C., 1990. Metamorphism and Magnetic Susceptibilities in South Indian Granulite Terrain. J. Geol. Soc. India, 35(4): 395–403
Renne, P. R., Scott, G. R., Glen, J. M. G., et al., 2002. Oriented Inclusions of Magnetite in Clinopyroxene: Source of Stable Remanet Magnetization in Gabbros of the Messum Complx, Namibia. Geochem., Geophy., Geosy., 3, doi:10.1029/2002GC000319
Roberts, S. J., Ruiz, J., 1989. Geochemistry of Exposed Granulite Facies Terrains and Lower Crustal Xenoliths in Mexico. J. Geophy. Res., 94(B6): 7961–7974 doi:10.1029/JB094iB06p07961
Rudnick, R. L., 1992. Xenoliths-Samples of the Lower Continental Crust. In: Fountain, D. M., Arculus, R., Kay, R. W., eds., Continental Lower Crust. Elsevier, Amsterdam. 269–316
Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578
Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Rev. Geophys., 33(3): 267–309 doi: 10.1029/95RG01302
Schlinger, C. M., 1985. Magnetization of Lower Crust and Interpretation of Regional Magnetic Anomalies: Example from Lofoten and Vesteralen, Norway. J. Geophys. Res., 90(NB13): 1484–1504 doi:10.1029/JB090Ib13p11484
Schlinger, C. M., Khan, M. J., Wasilewski, P., 1989. Rock Magnetism of the Kohistan Island Arc, Pakistan. Geol. Bull. Univ., 22: 83–101
Shive, P. N., Blakely, R. J., Frost, B. R., et al., 1992. Magnetic Properties of the Lower Continental Crust. In: Fountain, D. M., Arculus, R., Kay, R. W., eds., Continental Lower Crust. Elsevier, Amsterdam. 145–178
Shive, P. N., Fountain, D. M., 1988. Magnetic Mineralogy in an Archean Crustal Cross Section: Implications for Crustal Magnetization. J. Geophys. Res., 93(B10): 12177–12186 doi:10.1029/JB093iB10p12177
Tarling, D. H., 1983. Palaeomagnetism: Principles and Applications in Geology, Geophysics, and Archaeology. Chapman and Hall Ltd. 50
Warner R. D., Wasilewski, P. J., 1995. Magnetic Petrology of Lower Crust and Upper Mantle Xenoliths from McMardo Sound, Antarctica. Tectonophysics, 249(1–2): 69–92
Wasilewski, P. J., Fountain, D. M., 1982. The Ivrea Zone as a Model for the Distribution of Magnetization in the Continental Crust. Geophys. Res. Lett., 9(4): 333–336 doi:10.1029/GL009i004p00333
Wasilewski, P. J., Mayhew, M. A., 1982. Crustal Xenoliths Magnetic Properties and Long Wavelength Anomaly Source Requirements. Geophys. Res. Lett., 9(4): 329–332 doi:10.1029/GL009i004p00329
Wasilewski, P. J., Warner, R. D., 1988. Magnetic Petrology of Deep Crustal Rocks-Ivrea Zone, Italy. Earth Planet. Sci. Lett., 87(3): 347–361 doi:10.1016/0012-821X(88)90022-2
Wedepohl, K. H., 1991. The Composition of the Continental Crust. Geochim. Cosmochim. Acta, 59(7): 1217–1232
Williams, M. C., Shive, P. N., Fountain, D. M., et al., 1985. Magnetic Properties of Exposed Deep Crustal Rocks from the Superior Province of Manitoba. Earth Plant. Sci. Lett., 76(1–2): 176–184 doi:10.1016/0012-821X(85)90157-8
Zhang, J. S., Piper, J. D. A., 1994. Magnetic Fabric and Post-Orogenic Uplift and Cooling Magnetizations in a Precambrian Granulite Terrain: The Datong-Huai’an Region of the North China Shield. Tectonophysics, 234(3): 227–246, doi:10.1016/0040-1951(94)90213-5
Zhang, J. S., Lao, Q. Y., Li, Y., 1999. Tectonic Implication of Aeromagnetic Anomaly and Evolution of Huabei-South Tarim-Yangtze Superlandmass. Earth Sci. Front., 6: 379–390 (in Chinese with English Abstract)
Zhang, X., Liu, M., Zhao, L., 2000. Crustal Magnetic Structure and Earthquakes in North China. Earthquake, 20: 50–56 (in Chinese with English Abstract)
Zheng, J. P., Griffin, W. L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chem. Geol., 264(1–4): 266–280, doi:10.1016/j. chemgeo.2009.03.011