Petrology and PGE Abundances of High‐Cr and High‐Al Podiform Chromitites and Peridotites from the Bulqiza Ultramafic Massif, Eastern Mirdita Ophiolite, Albania

Acta Geologica Sinica - Tập 92 Số 3 - Trang 1063-1081 - 2018
Tian Qiu1, Jingsui Yang1, Ibrahim Milushi2, Weiwei Wu3, Nezir Mekshiqi2, Fahui Xiong1, Cong Zhang1,4, Tingting Shen1
1Center for Advanced Research on the Mantle (CARMA), Key Laboratory of Deep Earth Dynamics of Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
2Institute of Geosciences, Energy, Water and Environment, Polytechnic University of TIRANA, Tirana 1000 Albania
3Faculty of Earth Sciences, China University of Geoscience, Wuhan 430074 Hubei, China
4Institute of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao 266510 Shandong, China

Tóm tắt

The Bulqiza ultramafic massif, which is part of the eastern Mirdita ophiolite of northern Albania, is world renowned for its high‐Cr chromitite deposits. High‐Cr chromitites hosted in the mantle section are the crystallized products of boninitic melts in a supra‐subduction zone (SSZ). However, economically important high‐Al chromitites are also present in massive dunite of the mantle‐crust transition zone (MTZ). Chromian‐spinel in the high‐Al chromitites and dunites of the MTZ have much lower Cr# values (100Cr/(Cr+Al)) (47.7–55.1 and 46.5–51.7, respectively) than those in the high‐Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The chemical differences in these two types of chromitites are reflected in the behaviors of their platinum‐group elements (PGE). The high‐Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high‐Al chromitites have relatively higher PPGE/IPGE ratios between 1.20 and 7.80. The calculated melts in equilibrium with the high‐Cr chromitites are boninitic‐like, and those associated with the high‐Al chromitites are MORB‐like but with hydrous, oxidized and TiO2‐poor features. We propose that the coexistence of both types of chromitites in the Bulqiza ultramafic massif may indicates a change in magma composition from MORB‐like to boninitic‐like in a proto‐forearc setting during subduction initiation.

Từ khóa


Tài liệu tham khảo

10.1007/s00410-002-0347-8

10.1007/s001260050287

10.1016/S0012-821X(02)00799-9

10.1180/minmag.1992.056.383.04

10.1144/0016-76492005-057

10.1016/j.oregeorev.2016.08.033

Bacuta G., 1990, Platinum‐group element abundance and distribution in chromite deposits of the Acoje block, Zambales ophiolite complex, Philippines, Journal of Geophysical Research, 37, 113

10.1038/348437a0

10.1007/BF00311183

10.1016/S0012-821X(98)00005-3

Peishen Bao, 1999, Chromite Deposit in China, 108

10.1016/0009-2541(85)90076-2

Beccaluva L., 1994, Mid–ocean ridge and supra–subduction affinities in ophiolitic belts from Albania, Ofioliti, 19, 77

Beccaluva L., 1998, Petrological modeling of Albanian Ophiolites with particular regard to the Bulqiza chromite ore deposits, Periodico di Mineralogia, 67, 7

10.2113/0090149

10.1016/j.chemgeo.2004.04.016

Bortolotti V. Kodra A. Marroni M. Mustafa F. Pandolfi L. Principi G. andSaccani E. 1996.Geology and petrology of ophiolitic sequences in Mirdita region(Northern Albania).

Ofioliti, 21, 3

Bushi S. andJauriZ. 1996. Morpho‐structural features of the pencil‐like chromium deposits (Shkalla type) and the possibility of their founding in the Bulqiza ultrabasic massif. In:Convegno Italo‐Albanese “GeorisorsedelleofiolitiAlbanesi ed innovazionetecnologica“ 182–186.

10.1016/j.epsl.2011.03.014

Dai J.G., 2011, Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung‐Zangbo Suture Zone: Implications for the early subduction zone within the Neo–Tethys, Lithos, 288, 133

10.1016/j.chemgeo.2008.08.002

10.1007/BF00373711

10.1016/j.lithos.2009.04.022

10.1016/j.gr.2007.01.005

10.2747/0020-6814.47.2.147

10.1016/j.lithos.2007.06.026

10.1029/2000TC900024

10.1016/S0169-1368(96)00008-X

10.1007/s00410-005-0039-2

10.1016/j.lithos.2011.01.016

10.1007/BF01162355

10.1016/0012-821X(88)90132-X

10.1016/j.lithos.2014.05.013

10.1016/0009-2541(90)90144-V

10.1093/petrology/42.4.655

10.1016/0024-4937(95)90003-9

10.1029/JB092iB08p08089

10.2113/gsecongeo.86.8.1672

10.2113/gsecongeo.92.4.503

Lian D.Y., 2017, Deep mantle origin and ultra‐reducing conditions in podiform chromitite: Diamond, moissanite and other unusual minerals in podiform chromitites from the Pozanti‐Karsanti ophiolite, southern Turkey, American Mineralogist, 102, 1101

Liu Xia, 2018, Ca‐enrichment characteristics of parental magmas of chromitite in ophiolite: inference from mineral inclusions, Earth Science, 43, 1038

10.1016/j.epsl.2009.11.017

10.1016/S0012-821X(01)00357-0

10.1093/petroj/38.10.1419

10.1007/s001260050202

Meshi A., 2005, Chromitites in the Mirdita ophiolite (Albania): structure and genetic implications, Journal of Alpine Geology, 47, 1

10.1080/00206810902823982

10.1016/j.jseaes.2012.05.008

Milushi I., 2015, An overview of the Albania ophiolite and related ore minerals, Acta GeologicaSinica, 89, 61

10.1016/j.lithos.2010.10.003

10.1130/G31706.1

10.1016/0009-2541(94)00140-4

10.1126/science.208.4451.1417

10.1093/petrology/42.10.1887

10.2113/econgeo.104.7.997

Page N., 1984, Palladium, platinum, rhodium, ruthenium, and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland, Canadian Mineralogist, 22, 137

10.2113/gsecongeo.77.6.1571

10.1093/petroj/39.9.1577

10.2113/gsecongeo.88.4.782

10.1016/j.lithos.2008.09.014

10.1144/GSL.SP.1993.076.01.13

10.2113/gsecongeo.103.7.1507

10.1016/j.oregeorev.2006.05.009

10.2113/gsecongeo.94.4.547

10.1029/2009GC002871

Roberts S. andNeary C.R. 1993. Petrogenesis of Ophiolitic Chromitite. In:Prichard H.M. Alabaster T. Harris N.B.W. andNeary C.R.(eds.) Magmatic Processes and Plate Tectonics. Geological Society of London Special Publication 257–272.

10.1016/S0040-1951(99)00262-0

10.1144/GSL.SP.2004.226.01.14

Robinson P.T., 1997, Podiform chromitites: their composition, origin and environment of formation, Episodes, 20, 247, 10.18814/epiiugs/1997/v20i4/007

10.1007/s00410-008-0284-2

10.1016/j.lithos.2013.07.004

10.1016/j.gr.2013.07.013

10.1111/j.1440-1738.2005.00482.x

Sack R.O., 1991, Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications, American Mineralogist, 76, 827

Shallo M. andDilek Y. 2003. Development of the ideas on the origin of Albanian ophiolites. In: Dilek Y. and Newcomb S. (eds.) Ophiolite Concept and the Evolution of Geological Thought.Geological Society of America Special Paper 351–364.

Shallo M. Kodra K. andGjata K. 1990. Geotectonics of the Albanian ophiolites. In:Malpas J. Moores E.M. Panayiotou A. andXenophontos C.(eds.) Oceanic Crustal Analogues.Geological Survey Department Cyprus 265–270.

Shallo M., 1987, Geochemistry of the volcanics from ophiolitic belts of Albanides, Ofioliti, 12, 125

Su B.X. Chen C. Pang K.N. Sakyi P.A. Uysal I. Avcι E. andZhang P.F. 2018. Various melt penetration in oceanic lithosphere: Li isotope records in Pozantι-Karsantι ophiolite in southern Turkey.Journal of Petrology doi:10.1093/petrology/egy023.

10.1039/b416844e

Sun M., 1993, A procedural modification for enhanced recovery of precious metals (Au, PGE) following nickel sulphide fire assay and tellurium coprecipitation: applications for analysis of geological samples by inductively coupled plasma mass spectrometry, Canadian Journal of Applied Spectroscopy, 38, 103

10.1111/1755-6724.12433

10.1016/j.oregeorev.2006.10.008

10.1007/s00410-009-0402-9

10.1016/j.oregeorev.2014.08.006

10.1007/s00410-011-0638-z

10.1007/978-1-4020-6788-4

10.1111/1755-6724.13316

Fahui Xiong, 2013, High‐Cr and high‐Al chromitite found in western Yarlung‐Zangbo suture zone in Tibet, Acta Petrologica Sinica, 29, 1878

10.1016/j.oregeorev.2015.04.011

10.1111/1755-6724.12681

10.1016/j.oregeorev.2016.09.009

10.1111/1755-6724.13111

10.1016/j.lithos.2008.05.003

10.1130/G23766A.1

Jingsui Yang, 2011, Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung‐Zangbo suture of Tibet: a proposal for a new type of diamond occurrence, Acta Petrologica Sinica, 27, 3171

10.2113/gselements.10.2.127

Zaccarini F., 2011, Chromite and platinum‐group‐elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): geodynamic implications, Geologica Acta, 9, 407

10.1016/j.lithos.2016.05.025

Meifu Zhou, 1994, The origin of the podiform chromite deposits, Mineral Deposits, 13, 242

10.2113/gsecongeo.92.2.259

10.1007/BF03326400

10.1016/S0016-7037(97)00382-7

10.1016/j.gr.2013.12.011