Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil)

Anais da Academia Brasileira de Ciencias - Tập 73 Số 1 - Trang 71-98 - 2001
G. Traversa1, Celso B. Gomes2, P. Brotzu3, Nicoletta Buraglini4, L. Morbidelli1, M. S. Principato5, Sara Ronca1, Excelso Ruberti2
1Università di Roma “La Sapienza” – Italy
2Universidade de São Paulo, Brazil
3Università di Napoli, Italy
4Università di Catania
5Università di Milano, Italy

Tóm tắt

The Araxá complex (16 km²) comprises carbonatites forming a central core and a complex network of concentric and radial dykes as well as small veins; additionally, it includes mica-rich rocks, phoscorites and lamprophyres. Fenites also occur and are represented by Proterozoic quartzites and schists of the Araxá Group. The petrographic study of 130 borehole samples indicates that the complex is basically made up by two rock-types, carbonatites and mica-rich rocks, and subordinately by a third unit of hybrid composition. Carbonatites range chemically in composition, the most abundant type being magnesiocarbonatites. Dolomite and calcite correspond to the chief constituents, but other carbonate phases, including the Ce-group RE minerals, are also recognized. Phosphates and oxides are widespread accessories whereas silicate minerals consist of olivine, clinopyroxene, mica and amphibole. Mica-rich rocks are represented by abundant glimmeritic rocks and scarce cumulitic phlogopite-, olivine- and diopside-bearing pyroxenites. Hybrid rocks mainly contain phlogopite and tetraferriphlogopite as cumulus and intercumulus phases, respectively; carbonate minerals may also be found. Chemical data indicate that the carbonatites are strongly enriched in REE and have lower contents of Nb, Zr, V, Cr, Ni and Rb compared to the mica-rich rocks. The higher K, Nb and Zr contents of the latter rocks are believed to be related to metasomatic processes (glimmeritization) of the pyroxenites. Similar REE patterns for carbonatites and mica-rich rocks seem to suggest that they are related to a single parental magma, possibly of ijolitic composition. Steep LREE/HREE fractionation and high sigmaREE content of some carbonatite samples would be explained by hydrothermal and supergenic processes.

Từ khóa


Tài liệu tham khảo

ALMEIDA FFM, 1973, The Pre-Cambrian evolution of the South American cratonic margin south of the Amazon River, 1, 441

ALMEIDA FFM, 1980, Informações geofísicas sobre o oeste mineiro e seu significado tectônico, An Acad Bras Ci, 52, 50

BARBIERI M, 1987, Petrological and geochemical studies of alkaline rocks from continental Brazil. 1. The phonolite suite from Piratini, RS, Geochim Brasil, 1, 109

BECCALUVA L, 1992, Fractional crystallization and liquid immiscibility processes in the alkaline-carbonatite complex of Juquiá (São Paulo, Brazil), J Petrol, 33, 1371, 10.1093/petrology/33.6.1371

BOYNTON WV, 1984, Cosmochemistry of the rare earth elements: meteorite studies, 63, 10.1016/B978-0-444-42148-7.50008-3

BROTZU P, 1989, Petrological and geochemical studies of alkaline rocks from continental Brazil. 8. The syenitic intrusion of Morro Redondo intrusive complex, State of Rio de Janeiro, Geochim Brasil, 3, 63

BROTZU P, 1994, Petrology and geochemistry of the Passa Quatro alkaline complex, southeastern Brazil, J South Amer Earth Sci, 6, 237, 10.1016/0895-9811(92)90044-Y

DEER WA, 1964, 5

EBY GN, 1975, Abundance and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec, Geochim Cosmochim Acta, 39, 597, 10.1016/0016-7037(75)90005-8

ERD RC, 1983, Taeniolite an uncommon lithium-mica from Coyote Peak County, California, The Mineralogical Record, 14, 39

FOSTER MD, 1960, 115

GIBSON AS, 1995, The Late Cretaceous impact of the trindade mantle plume; evidence from large-volume, mafic, potassic magmatism in SE Brazil, J Petrol, 36, 189, 10.1093/petrology/36.1.189

GOMES CB, 1987, Petrological and geochemical studies of alkaline rocks from continental Brazil. 2. The Tunas massif, State of Paraná, Geochim Brasil, 1, 201

GOMES CB, 1990, Carbonatite complexes from Brazil: A review, J South Amer Earth Sci, 3, 51, 10.1016/0895-9811(90)90017-U

GROSSI-SAD JH, 1976

HASUI Y, 1968

HASUI Y, 1975, The phanerozoic tectonic evolution of the western Minas Gerais State, An Acad Bras Ci, 47, 431

HEINRICH EW, 1980

HOGARTH DD, 1977, Classification and nomenclature of the pyrochlore group, Amer Mineral, 62, 403

HOGARTH DD, 1989, Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite, 105

HORNIG-KJARSGAARD I, 1998, Rare earth elements in sovitic carbonatites and their mineral phases, J Petrol, 39, 2105, 10.1093/petrology/39.11.2105

ISSA FILHO A, 1984, Aspects of the geology of the Barreiro Carbonatitic Complex, Araxá, MG, Brazil, 19

KARUP-MøLLER S, 1986, Nenadkevikite from the Ilimaussaq intrusion in South Greenland, N Jahr Mineral Monatsh, 2, 49

KASPUTIN YL, 1980, 256

KELLER J, 1990

KHOMYAKOV AP, 1995, 223

LE BAS MJ, 1989, Diversification of carbonatite, 428

LE BAS MJ, 1979, Variation in apatite composition in ijolitic and carbonatitic igneous rocks, Nature, 279, 54, 10.1038/279054a0

LEAKE BE, 1997, Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names, Eur J Mineral, 9, 623, 10.1127/ejm/9/3/0623

MACCIOTTA G, 1990, Petrology of the tephrite-phonolite suite and cognate xenoliths of the Fortaleza district (Ceará, Brazil), Eur J Mineral, 2, 687, 10.1127/ejm/2/5/0687

MILTON C, 1961, Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas, Amer Mineral, 46, 533

MORBIDELLI L, 1986, Petrological and geochemical studies of alkaline rocks from continental Brazil. 3. Fenitization of jacupirangite by carbonatite magmas in the Jacupiranga complex, SP, Per Mineral, 55, 261

MORBIDELLI L, 1995, Mineralogical, petrological and geochemical aspects of alkaline-carbonatite associations from Brazil, Earth-Sci Ver, 39, 135

MORBIDELLI L, 1997, Parental magma characterization of Salitre cumulate rocks (Alto Paranaíba Alkaline Province, Brazil) as inferred from mineralogical, petrographic, and geochemical data, Int Geol Ver, 39, 723, 10.1080/00206819709465298

MORBIDELLI L, 1999, The Pariquera Açu K-alkaline complex and southern Brazil lithospheric mantle source characteristics, J Asian Earth Sci, 18, 129, 10.1016/S1367-9120(99)00028-0

PAPIKE JJ, 1974, Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data, Bull Geol Amer Soc, 6, 1053

PIRES RM, 1986, The southern limits of the São Francisco craton, An Acad Bras Ci, 58, 139

PLATT GR, 1990, The carbonatites and fenites of Chipman Lake, Ontario, Canad Mineral, 28, 241

RUBERTI E, 1998

SONOKI IK, 1988, Idades K/Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação às novas constantes de decaimento, Bol. IG-USP, Sér Cient, 19, 63, 10.11606/issn.2316-8986.v19i0p63-85

SPEER JA, 1976, Strontianite composition and physical properties, Amer Mineral, 61, 1001

TRAVERSA G, 1996, Mantle sources and differentiation of alkaline magmatic suite of Lages, Santa Catarina, Brazil, Eur J Mineral, 8, 193, 10.1127/ejm/8/1/0193

ULBRICH HHGJ, 1981, Alkaline rocks from continental Brazil, Earth Sci Rev, 17, 135, 10.1016/0012-8252(81)90009-X

WOOLLEY AR, 1982, A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites, Mineral Mag, 46, 13, 10.1180/minmag.1982.046.338.03

WOOLLEY AR, 1989, Carbonatites: nomenclature, average chemical compositions, and element distribution, 1