Perturbations of copulas and mixing properties

Journal of the Korean Statistical Society - Tập 51 - Trang 149-171 - 2021
Martial Longla1, Fidel Djongreba Ndikwa2, Mathias Nthiani Muia1, Patrice Soh Takam3
1Department of Mathematics, University of Mississippi, University, USA
2Department of Mathematics, University of Maroua, Maroua, Cameroon
3Department of Mathematics, University of Yaounde I, Yaoundé, Cameroon

Tóm tắt

This paper explores the impact of perturbations of copulas on the dependence properties of the Markov chains they generate. We consider Markov chains generated by perturbations of copulas. Results are provided for the mixing coefficients $$\beta _n$$ , $$\psi _n$$ and $$\phi _n$$ . Several results on mixing for the considered perturbations are provided. New copula functions are provided in connection with perturbations of variables that induce other types of perturbation of copulas not considered in the literature.

Tài liệu tham khảo

Beare, B. K. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. Blum, J. R., Hanson, D. L., & Koopmans, L. H. (1963). On the strong law of large numbers for a class of stochastic processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 1–11. Bradley, R. C. (1983). On the \(\psi\)-mixing for stationary sequences. Transactions of the American Mathematical Society, 276(1), 55–66. Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys, 2, 107–144. Bradley, R. C. (2007). Introduction to strong mixing conditions (Vol. 1,2). Kendrick Press. Darsow, W. F., Nguyen, B., & Olsen, E. T. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36(4), 600–642. De Baets, B., & De Meyer, H. (2013). On a conjecture about the Frank copula family. Fuzzy Sets and Systems, 228, 15–28. Durante, F., & Sempi, C. (2015). Principles of Copula theory. CRC Press LLC. Durante, F., Sanchez, J. F., & Flores, M. U. (2013). Bivariate copulas generated by perturbations. Fuzzy Sets and Systems, 228, 137–144. Dolati, A., & Ubeda-Flores, M. (2009). Constructing copulas by means of pairs of order statistics. Kybernetika (Prague), 45, 992–1002. Kesten, H., & O'Brien, G. L. (1976). Examples of mixing sequences. Duke Mathematical Journal, 43(2), 405–415. Komornik, J., Komornikova, M., & Kalicka, J. (2017). Dependence measures for perturbations of copulas. Fuzzy Sets and Systems, 324, 100–116. Longla, M. (2013). Remarks on the speed of convergence of mixing coefficients and applications. Statistics and Probability Letters, 83(10), 2439–2445. Longla, M. (2014). On dependence structure of copula-based Markov chains. ESAIM: Probability and Statistics, 18, 570–583. Longla, M. (2015). On mixtures of copulas and mixing coefficients. Journal of Multivariate analysis, 139, 259–265. Longla, M., & Peligrad, M. (2012). Some aspects of modeling dependence in copula-based Markov chains. Journal of Multivariate Analysis, 111, 234–240. Mesiar, R., Komornikova, M., & Komornik, J. (2015). Perturbation of bivariate copula. Fuzzy Sets and Systems, 268, 127–140. Mesiar, R., Sheikhi, A., & Komornikova, M. (2019). Random noise and perturbation of copulas. Kybernetika, 55(2), 422–434. Nelsen, R. B. (2006). An introduction to Copulas (2nd ed.). Springer-Verlag, Springer Series (in Statistics). Philipp, W. (1969). The central limit problem for mixing sequences of randomvariables. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 12, 155–171. Phillip, W. (1971). Mixing sequences of random variables and probabilistic number theory. American Mathematical Society (Memoir no. 114). Sheikhi, A., Amirzadeha, V., & Mesiar, R. (2020). A comprehensive family of copulas to model bivariate random noise and perturbation. Fuzzy Sets and Systems, 415, 27–36. Sklar, A. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l'Institut de statistique de l'Université de Paris 8, 229–231.