Perturbations of May–Leonard system

Bulletin des Sciences Mathématiques - Tập 138 - Trang 971-992 - 2014
Yulin Zhao1, Xiuli Cen1
1Department of Mathematics, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China

Tài liệu tham khảo

Blé, 2013, Integrability and global dynamics of the May–Leonard model, Nonlinear Anal., Real World Appl., 14, 280, 10.1016/j.nonrwa.2012.06.004 Camacho, 1981, Geometric properties of homogeneous vector fields of degree two vector fields on R3, Trans. Am. Math. Soc., 268, 78 Francoise, 1996, Successive derivative of first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst., 1, 87, 10.1017/S0143385700008725 Francoise, 1997, The first derivative of the period function of a plane vector field, Publ. Mat., 41, 127, 10.5565/PUBLMAT_41197_07 Grau, 2011, A Chebyshev criterion for Abelian integrals, Trans. Am. Math. Soc., 363, 109, 10.1090/S0002-9947-2010-05007-X Grau, 2010, Bifurcation of critical periods from Pleshkan's isochrones, J. Lond. Math. Soc., 81, 142, 10.1112/jlms/jdp062 Gyllenberg, 2009, On the number of limit cycles for the three-dimensional Lotka–Volterra systems, Discrete Contin. Dyn. Syst., Ser. B, 11, 347 Iliev, 1996, The cyclicity of the period annulus of the quadratic Hamiltonian triangle, J. Differ. Equ., 128, 309, 10.1006/jdeq.1996.0097 Iliev, 1996, Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Differ. Equ., 1, 689 Llibre, 2007, 3-dimensional Hopf bifurcation via averaging theory, Discrete Contin. Dyn. Syst., 17, 529, 10.3934/dcds.2007.17.529 Llibre, 2008, Hopf bifurcation for degenerate singular points of multiplicity 2n−1 in dimensional 3, Bull. Sci. Math., 132, 218, 10.1016/j.bulsci.2007.01.003 Llibre, 2006, Homogeneous polynomial vector fields of degree 2 on the 2-dimensional sphere, Extr. Math., 21, 167 May, 1975, Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29, 243, 10.1137/0129022 Uno, 1997, On a Lotka–Volterra model which can be projected to a sphere, Nonlinear Anal., 30, 1405, 10.1016/S0362-546X(97)00201-0 Xiao, 2000, Limit cycles for the competitive three dimensional Lotka–Volterra system, J. Differ. Equ., 164, 1, 10.1006/jdeq.1999.3729 Yang, 2010, Five limit cycles for a class of quadratic systems in R3, Chin. J. Contemp. Math., 31, 297 Zeeman, 1993, Hopf bifurcation in competitive three-dimensional Lotka–Volterra systems, Dyn. Stab. Syst., 8, 189 Zhang, 2000