Perturbation of sectorial projections of elliptic pseudo-differential operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agmon S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15, 119–147 (1962)
Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)
Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc. Camb. Philos. Soc. 78(3), 405–432 (1975)
Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Camb. Philos. Soc. 79(1), 71–99 (1976)
Axelsson A., Keith S., McIntosh A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006) arXiv:math/0412321v2
Bilyj O., Schrohe E., Seiler J.: H ∞-calculus for hypoelliptic pseudodifferential operators. Proc. Am. Math. Soc. 138(5), 1645–1656 (2010) arXiv:0901.3160v2 [math.AP]
Booß-Bavnbek B.: Basic functional analysis puzzles of spectral flow. J. Aust. Math. Soc. 90, 145–154 (2011). arXiv:1010.6084v1 [math.SP]
Booss-Bavnbek B., Furutani K.: The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21(1), 1–34 (1998)
Booß-Bavnbek B., Lesch M., Phillips J.: Unbounded Fredholm operators and spectral flow. Can. J. Math. 57, 225–250 (2005). arXiv:math.FA/0108014
Booß-Bavnbek B., Lesch M., Zhu C.: The Calderón projection: new definition and applications. J. Geom. Phys. 59(7), 784–826 (2009). arXiv:0803.4160v1 [math.DG]
Booß-Bavnbek B., Wojciechowski K.P.: Elliptic boundary problems for Dirac operators. Mathematics: Theory and Applications. Birkhäuser Boston Inc., Boston (1993)
Burak T.: On spectral projections of elliptic operators. Ann. Scuola Norm. Sup. Pisa 24(3), 209–230 (1970)
Cappell S.E., Lee R., Miller E.Y.: Self-adjoint elliptic operators and manifold decompositions. I. Low eigenmodes and stretching. Comm. Pure Appl. Math. 49(8), 825–866 (1996)
Cappell S.E., Lee R., Miller E.Y.: Self-adjoint elliptic operators and manifold decompositions. II. Spectral flow and Maslov index. Comm. Pure Appl. Math. 49(9), 869–909 (1996)
Eichhorn, J.: Index theory for generalized Dirac operators on open manifolds. In: C *-algebras and elliptic theory. Trends in Mathematics, pp. 73–128. Birkhäuser, Basel (2006)
Gaarde A., Grubb G.: Logarithms and sectorial projections for elliptic boundary problems. Math. Scand. 103(2), 243–277 (2008) arXiv:0703878v2[math.AP]
Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah–Singer Index Theorem. In: Studies in Advanced Mathematics, 2nd edn. CRC Press, Boca Raton (1995)
Grigis, A., Sjöstrand, J.: Microlocal analysis for differential operators. London Mathematical Society Lecture Note Series, vol. 196. Cambridge University Press, Cambridge, 1994 (an introduction)
Grubb, G.: The sectorial projection defined from logarithms. Preprint (2011). arXiv:1102.4051v1 [math.AP]
Halmos, P.R., Sunder, V.S.: Bounded integral operators on L 2 spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96. Springer, Berlin (1978)
Himpel B., Kirk P., Lesch M.: Calderón projector for the Hessian of the perturbed Chern–Simons function on a 3-manifold with boundary. Proc. Lond. Math. Soc. (3) 89(1), 241–272 (2004). arXiv:0302234 [math.GT]
Hörmander L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Classics in Mathematics. Springer, Berlin (2007) (reprint of the 1994 edition)
Kirk P., Lesch M.: The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary. Forum Math. 16(4), 553–629 (2004). arXiv:0012123 [math.DG]
Lesch, M., Moscovici, H., Pflaum, M.J.: Connes–Chern character for manifolds with boundary and eta cochains (2010). arXiv:0912.0194 [math.OA]
Nazaĭkinskiĭ, V., Sternin, B., Shatalov, V., Schulze B.-W.: Spectral boundary value problems and elliptic equations on manifolds with singularities. Differ. Uravn. 34(5), 695–708, 720 (1998) (translation in Differential Equations 34(5) 696–710 (1998))
Nicolaescu L.I.: The Maslov index, the spectral flow, and decompositions of manifolds. Duke Math. J. 80(2), 485–533 (1995)
Okikiolu K.: The Campbell–Hausdorff theorem for elliptic operators and a related trace formula. Duke Math. J. 79(3), 687–722 (1995)
Palais R.S.: Seminar on the Atiyah–Singer index theorem. With contributions by M. F., Atiyah, A., Borel, E. E., Floyd, R. T., Seeley, W., Shih, R. Solovay, Annals of Mathematics Studies, vol. 57. Princeton University Press, Princeton (1965)
Ponge R.: Spectral asymmetry, zeta functions, and the noncommutative residue. Int. J. Math. 17(9), 1065–1090 (2006) arXiv:0510061 [math.DG]
Savin A.Y., Sternin B.Y.: The index defect in the theory of nonlocal problems and the η-invariant. Mat. Sb. 195(9), 85–126 (2004)
Savin, A.Y., Sternin, B.Y., Schulze, B.-W.: On invariant index formulas for spectral boundary value problems. Differ. Uravn. 35(5):705–714, 720 (1999) (translation in Differential Equations 35(5), 709–718 (1999))
Seeley, R.T.: Complex powers of an elliptic operator. In Singular Integrals (Proc. Sympos. Pure Math., Chicago, IL, 1966), pp. 288–307. Amer. Math. Soc., Providence (1967)
Shubin, M.A.: Pseudodifferential operators and spectral theory, 2nd edn. Springer, Berlin (translated from the 1978 Russian original by Stig I. Andersson (2001))
Wodzicki, M.: Commentary. In: Arnold, V.I., Parshin, A.N. (eds.) Hermann Weyl’s Selected Papers. Nauka, Moscow (1984) (in Russian)
Wodzicki, M.: Spectral asymmetry and noncommutative residue, thesis. Preprint (1984) (in Russian)
Wojciechowski K.: Spectral flow and the general linear conjugation problem. Simon Stevin 59(1), 59–91 (1985)
