Perspectives for Genomic Selection Applications and Research in Plants

Wiley - Tập 55 Số 1 - Trang 1-12 - 2015
Nicolas Heslot1,2, Jean‐Luc Jannink1,3, Mark E. Sorrells1
1Cornell Univ. Dep. of Plant Breeding and Genetics 240 Emerson Hall Ithaca NY 14853
2Limagrain Europe CS3911 Chappes 63720 France
3USDA‐ARS R.W. Holley Center for Agriculture and Health, Cornell Univ. Ithaca NY 14853

Tóm tắt

ABSTRACTGenomic selection (GS) has created a lot of excitement and expectations in the animal‐ and plant‐breeding research communities. In this review, we briefly describe how genomic prediction can be integrated into breeding efforts and point out achievements and areas where more research is needed. Genomic selection provides many opportunities to increase genetic gain in plant breeding per unit time and cost. Early empirical and simulation results are promising, but for GS to deliver genetic gains, careful consideration of the problem of optimal resource allocation is needed. Consideration of the cost‐benefit balance of using markers for each trait and stage of the breeding cycle is needed, moving beyond only focusing on recurrent selection with GS on a few complex traits, using prediction on unphenotyped individuals. With decreasing marker cost, phenotype data is quickly becoming the most valuable asset and marker‐assisted selection strategies should focus on making the most of scarce and expensive phenotypes. It is important to realize that markers can also improve accuracy of selection for phenotyped individuals. Use of markers as an aid to phenotype analysis suggests a number of new strategies in terms of experimental design and multi‐trait models. GS also provides new ways to analyze and deal with genotype by environment interactions. Lastly, we point to some recent results showing that new models are needed to improve predictions particularly with respect to the use of distantly related individuals in the training population.

Từ khóa


Tài liệu tham khảo

10.1038/nmeth0410-248

10.1007/s00122-014-2305-z

10.2135/cropsci2012.09.0526

10.2135/cropsci1991.0011183X003100050020x

10.2135/cropsci2008.03.0131

10.2135/cropsci2008.08.0452

Bernardo R., 2013, Genomewide selection when major genes are known, Crop Sci., 54, 68, 10.2135/cropsci2013.05.0315

10.2135/cropsci2006.11.0690

10.2135/cropsci2011.06.0299

10.1186/1297-9686-43-26

10.2135/cropsci2012.11.0666

10.1079/9780851991085.0000

10.1534/genetics.110.118521

10.1139/G10-080

10.1198/108571106X154443

10.1111/j.1439-0388.2007.00693.x

10.2527/jas.2008-1259

Campos G., 2013, Prediction of complex human traits using the genomic best linear unbiased predictor (Editor, M.E. Goddard), PLoS Genet., 9, E1003608, 10.1371/journal.pgen.1003608

10.1111/1541-0420.00044

10.1371/journal.pone.0019379

10.2135/cropsci2013.03.0154

10.1534/g3.112.004259

10.3168/jds.2011-5019

10.1086/281736

Falconer D.S., 1996, Introduction to quantitative genetics

10.1007/BF00266552

10.1186/1297-9686-41-55

10.1534/genetics.113.151753

10.1534/genetics.109.103952

10.1007/s10709-008-9308-0

10.1534/genetics.107.081190

10.1534/genetics.113.152207

10.3168/jds.2008-1646

10.1186/1297-9686-41-51

10.2135/cropsci2011.05.0253

10.2135/cropsci2009.11.0662

10.2135/cropsci2008.08.0512

10.2527/jas1976.4361188x

Henderson C.R., 1984, Applications of linear models in animal breeding

10.1007/s00122-013-2231-5

10.2135/cropsci2012.07.0420

10.1371/journal.pone.0074612

10.2135/cropsci2011.06.0297

10.2135/cropsci2013.03.0195

10.1017/S0016672310000480

Jannink J.‐L, 2010, Dynamics of long‐term genomic selection, Genet. Sel. Evol., 42, 35, 10.1186/1297-9686-42-35

10.1534/genetics.112.144246

Knapp S.J., 1990, Using molecular markers to estimate quantitative trait locus parameters: Power and genetic variances for unreplicated and replicated progeny, Genetics, 126, 769, 10.1093/genetics/126.3.769

10.3168/jds.2008-1310

Laloë D., 1993, Precision and information in linear models of genetic evaluation, Genet. Sel. Evol., 25, 556, 10.1186/1297-9686-25-6-557

10.1186/1297-9686-28-4-359

10.1093/genetics/124.3.743

10.1186/1297-9686-45-39

10.1007/s13353-011-0053-1

Lorenz A.J., 2013, Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: A simulation experiment, G3, 3, 481, 10.1534/g3.112.004911

10.1016/B978-0-12-385531-2.00002-5

10.2135/cropsci2011.09.0503

10.1007/s00122-009-1166-3

10.1007/s00122-012-1955-y

10.2135/cropsci2012.02.0112

10.1126/science.1222794

Meuwissen T., 2010, Proceedings of the 9th World Congress on Genetics Applied to Livestock Production

10.1093/genetics/157.4.1819

10.1023/B:EUPH.0000040508.01402.21

10.1111/j.1439-0388.2007.00700.x

10.1105/tpc.109.068437

10.2135/cropsci2004.0398

Piepho H.P., 2007, BLUP for phenotypic selection in plant breeding and variety testing, Euphytica, 161, 209, 10.1007/s10681-007-9449-8

10.1046/j.1439-0523.1999.118001017.x

10.1534/genetics.113.150227

10.1186/1471-2164-13-452

10.1534/genetics.112.141473

10.3835/plantgenome2012.02.0001

10.1111/j.1439-0388.2006.00595.x

10.1002/9780470316856

10.1534/genetics.103.023358

10.1017/S0021859605005587

10.2135/cropsci1982.0011183X002200040010x

10.1038/nbt0389-257

10.1093/jxb/err269

10.1186/1297-9686-45-40

10.3168/jds.2007-0980

10.1534/genetics.113.155176

10.1534/genetics.113.150078

10.2135/cropsci2007.04.0191

10.1534/genetics.107.075358

10.2135/cropsci2012.11.0651