Perspectives and recent advances in quantitative structure-retention relationships for high performance liquid chromatography. How far are we?

TrAC Trends in Analytical Chemistry - Tập 141 - Trang 116294 - 2021
Gulyaim Sagandykova1,2, Bogusław Buszewski1,2
1Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Gagarina 7, 87-100, Toruń, Poland
2Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland

Tài liệu tham khảo

Engelhardt, 2004, One century of liquid chromatography: from Tswett's columns to modern high speed and high performance separations, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 800, 3, 10.1016/j.jchromb.2003.09.064 D'Atri, 2019, Recent advances in chromatography for pharmaceutical analysis, Anal. Chem., 91, 210, 10.1021/acs.analchem.8b05026 Kaliszan, 1993, Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography, J. Chromatogr. A, 656, 417, 10.1016/0021-9673(93)80812-M Kaliszan, 2007, QSRR: quantitative structure-(chromatographic) retention relationships, Chem. Rev., 107, 3212, 10.1021/cr068412z Kaliszan, 1992, Quantitative structure-retention relationships, Anal. Chem., 64, 619, 10.1021/ac00035a722 Giaginis, 2013, Quantitative structure-retention relationships as useful tool to characterize chromatographic systems and their potential to simulate biological processes, Chromatographia, 76, 211, 10.1007/s10337-012-2374-6 Taraji, 2018, Chemometric-assisted method development in hydrophilic interaction liquid chromatography: a review, Anal. Chim. Acta, 1000, 20, 10.1016/j.aca.2017.09.041 Amos, 2018, Molecular modeling and prediction accuracy in Quantitative Structure-Retention Relationship calculations for chromatography, TrAC Trends Anal. Chem. (Reference Ed.), 105, 352, 10.1016/j.trac.2018.05.019 Sagandykova, 2018, Modern analytical methods for consideration of natural biological activity, TrAC Trends Anal. Chem. (Reference Ed.), 198, 10.1016/j.trac.2018.10.012 Žuvela, 2019, Column characterization and selection systems in reversed-phase high-performance liquid chromatography, Chem. Rev. Buszewski, 1997, Chemically bonded silica stationary phases: synthesis, physicochemical characterization, and molecular mechanism of reversed-phase HPLC retention, Anal. Chem., 69, 3277, 10.1021/ac9612032 Song, 2019, Retention time and optimal collision energy advance structural annotation relied on LC-MS/MS: an application in metabolite identification of an antidementia agent namely echinacoside, Anal. Chem., 91, 15040, 10.1021/acs.analchem.9b03720 Santoro, 2016, Quantitative structure – retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography, Eur. J. Pharmaceut. Sci., 88, 147, 10.1016/j.ejps.2015.12.009 Russo, 2017, Determination of in vitro and in silico indexes for the modeling of blood-brain barrier partitioning of drugs via micellar and immobilized artificial membrane liquid chromatography, J. Med. Chem., 60, 3739, 10.1021/acs.jmedchem.6b01811 Ciura, 2017, Thin layer chromatography in drug discovery process, J. Chromatogr. A, 1520, 9, 10.1016/j.chroma.2017.09.015 Aćimović, 2020, QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition, Ind. Crop. Prod., 154, 10.1016/j.indcrop.2020.112752 Aalizadeh, 2019, Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants, J. Hazard Mater., 363, 277, 10.1016/j.jhazmat.2018.09.047 Park, 2017, Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training, J. Chromatogr. A, 1520, 107, 10.1016/j.chroma.2017.09.016 Sheridan, 2004, Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR, J. Chem. Inf. Comput. Sci., 44, 1912, 10.1021/ci049782w Rouvray, 1990, Concepts and applications of molecular similarity, 15 Maldonado, 2006, Molecular similarity and diversity in chemoinformatics: from theory to applications, Mol. Divers., 10, 39, 10.1007/s11030-006-8697-1 Sheridan, 2002, Why do we need so many chemical similarity search methods?, Drug Discov. Today, 7, 903, 10.1016/S1359-6446(02)02411-X Martin, 2002, Do structurally similar molecules have similar biological activity, J. Med. Chem., 45, 4350, 10.1021/jm020155c Patterson, 1996, Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors, J. Med. Chem., 39, 3049, 10.1021/jm960290n Doucet, 1998, 3D structural information: from property prediction to substructure recognition with neural networks, SAR QSAR Environ. Res., 8, 249, 10.1080/10629369808039143 Gund, 1980, Three-dimensional molecular modeling and drug design, Science (80-.), 27, 1425, 10.1126/science.6104357 Pepperrell, 1990, Implementation and use of an atom-mapping procedure for similarity searching in databases of 3-D chemical structures, Tetrahedron Comput. Methodol., 3, 575, 10.1016/0898-5529(90)90160-A Nikolova, 2004, Approaches to measure chemical similarity – a review, QSAR Comb. Sci., 22, 1006, 10.1002/qsar.200330831 Bajorath, 2002, Virtual screening in drug discovery: methods, expectations and reality, Curr. Drug Discov., 2, 24 Taraji, 2017, Error measures in quantitative structure-retention relationships studies, J. Chromatogr. A, 1524, 298, 10.1016/j.chroma.2017.09.050 Gramatica, 2007, Principles of QSAR models validation: internal and external, QSAR Comb. Sci., 26, 694, 10.1002/qsar.200610151 Alexander, 2015, Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models, J. Chem. Inf. Model., 55, 1316, 10.1021/acs.jcim.5b00206 Golbraikh, 2002, Beware of q2!, J. Mol. Graph. Model., 20, 269, 10.1016/S1093-3263(01)00123-1 Roy, 2016, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemometr. Intell. Lab. Syst., 152, 18, 10.1016/j.chemolab.2016.01.008 Puzyn, 2011, Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models, Struct. Chem., 22, 795, 10.1007/s11224-011-9757-4 Daszykowski, 2002, Representative subset selection, Anal. Chim. Acta, 468, 91, 10.1016/S0003-2670(02)00651-7 Héberger, 2007, Quantitative structure-(chromatographic) retention relationships, J. Chromatogr. A, 1158, 273, 10.1016/j.chroma.2007.03.108 Muteki, 2013, Quantitative structure retention relationship models in an analytical quality by design framework: simultaneously accounting for compound properties, mobile-phase conditions, and stationary-phase properties, Ind. Eng. Chem. Res., 52, 12269, 10.1021/ie303459a Taraji, 2017, Rapid method development in hydrophilic interaction liquid chromatography for pharmaceutical analysis using a combination of quantitative structure-retention relationships and design of experiments, Anal. Chem., 89, 1870, 10.1021/acs.analchem.6b04282 Tyteca, 2017, Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: use of retention factor ratio, J. Chromatogr. A, 1486, 50, 10.1016/j.chroma.2016.09.062 Taraji, 2017, Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems, J. Chromatogr. A, 1507, 53, 10.1016/j.chroma.2017.05.044 Bajusz, 2015, Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?, J. Cheminf., 7, 1 Jaccard, 2013 Bender, 2004, Molecular similarity: a key technique in molecular informatics, Org. Biomol. Chem., 2, 3204, 10.1039/b409813g Sagandykova, 2020, New methodology for the identification of metabolites of saccharides and cyclitols by off-line ec-maldi-tof-ms, Int. J. Mol. Sci., 21, 1, 10.3390/ijms21155265 Juran, 1992 Park, 2020, Localised quantitative structure–retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography, J. Chromatogr. A, 1609, 460508, 10.1016/j.chroma.2019.460508 Park, 2017, Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography, J. Chromatogr. A, 1523, 173, 10.1016/j.chroma.2017.02.054 Snyder, 1998, The linear-solvent-strength model of gradient elution, Adv. Chromatogr., 38, 115 Shellie, 2008, Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps, Anal. Chem., 80, 2474, 10.1021/ac702275n Wen, 2018, Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model, J. Chromatogr. A, 1541, 1, 10.1016/j.chroma.2018.01.053 Wang, 2009, Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions, J. Chromatogr. A, 1216, 5030, 10.1016/j.chroma.2009.04.064 Wilson, 2002, Column selectivity in reversed-phase liquid chromatography: III. The physico-chemical basis of selectivity, J. Chromatogr. A, 961, 217, 10.1016/S0021-9673(02)00658-1 D. Stoll, P. Boswell, University of Minnesota − Boswell Research Group, (n.d.). hplccolumns.org/database/index.php. Todeschini, 2000 Leardi, 1998, Genetic algorithms applied to feature selection in PLS regression: how and when to use them, Chemometr. Intell. Lab. Syst., 41, 195, 10.1016/S0169-7439(98)00051-3 Ong, 1994, Phospholipid immobilization on solid surfaces, Anal. Chem., 66, 782, 10.1021/ac00078a004 Caldwell, 1998, Evaluation of the immobilized artificial membranephosphatidylcholine. Drug discovery column for high-performance liquidchromatographic screening of drug–membrane interactions, J. Chromatogr. A, 800, 161, 10.1016/S0021-9673(97)01143-6 Yen, 2005, Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors, J. Pharmaceut. Biomed. Anal., 38, 472, 10.1016/j.jpba.2005.01.040 Barbato, 1997, Chromatographic indexes on immobilized artificial membranes for local anesthetics: relationships with activity data on closed sodium channels, Pharm. Res. (N. Y.), 14, 1699, 10.1023/A:1012119527214 Péhourcq, 2004, Diffusion of arylpropionate non-steroidal anti-inflammatory drugs into the cerebrospinal fluid: a quantitative structure-activity relationship approach, Fundam. Clin. Pharmacol., 18, 65, 10.1111/j.1472-8206.2004.00201.x Taillardat-Bertschinger, 2003, Immobilized artificial membrane HPLC in drug research, J. Med. Chem., 46, 655, 10.1021/jm020265j Valko, 2018, Biomimetic chromatography to accelerate drug discovery: Part 1, LC GC, 31, 62 Hollosy, 2006, Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning, J. Med. Chem., 49, 6958, 10.1021/jm050957i Sagandykova, 2020, Multi-instrumental approach to unravel molecular mechanisms of natural bioactive compounds: case studies for flavonoids, TrAC Trends Anal. Chem. (Reference Ed.), 126 Emenike, 2018, Solvent modulation of aromatic substituent effects in molecular balances controlled by CH-π interactions, J. Phys. Chem., 122, 909, 10.1021/acs.jpca.7b09910 Emenike, 2016, Quantitative model for rationalizing solvent effect in noncovalent CH-Aryl interactions, Chem. Sci., 7, 1401, 10.1039/C5SC03550C Cook, 2007, Solvent effects on hydrogen bonding, Angew. Chem. Int. Ed., 46, 3706, 10.1002/anie.200604966 Yang, 2015, Quantifying solvophobic effects in nonpolar cohesive interactions, J. Am. Chem. Soc., 137, 10084, 10.1021/jacs.5b05736 Adam, 2015, Partitioning solvophobic and dispersion forces in alkyl and perfluoroalkyl cohesion, Angew. Chem. Int. Ed., 54, 1164, 10.1002/anie.201408982 Emenike, 2013, Substituent effects on energetics of peptide-carboxylate hydrogen bonds as studied by 1H NMR spectroscopy: implications for enzyme catalysis, J. Org. Chem., 78, 11765, 10.1021/jo401762m Gung, 2010, Quantification of CH⋯π interactions: implications on how substituent effects influence aromatic interactions, Chem. Eur J., 16, 12357, 10.1002/chem.201001362 Cockroft, 2007, Substituent effects on aromatic stacking interactions, Org. Biomol. Chem., 5, 1062, 10.1039/b617576g Buszewski, 2020, Mechanistic chromatographic column characterization for the analysis of flavonoids using quantitative structure-retention relationships based on density functional theory, Int. J. Mol. Sci., 21, 10.3390/ijms21062053 Chirita, 2011, Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography, J. Chromatogr. A, 1218, 5939, 10.1016/j.chroma.2011.04.002 Schuster, 2013, Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships, J. Chromatogr. A, 1273, 73, 10.1016/j.chroma.2012.11.075 Moravcová, 2015, Phosphatidylcholine covalently linked to a methacrylate-based monolith as a biomimetic stationary phase for capillary liquid chromatography, J. Chromatogr. A, 1402, 27, 10.1016/j.chroma.2015.05.004 Moravcová, 2013, Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography, J. Chromatogr. A, 1317, 159, 10.1016/j.chroma.2013.08.031 Wang, 2017, Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography, J. Chromatogr. A, 1479, 97, 10.1016/j.chroma.2016.11.046 Skoczylas, 2011, Silica gel and its derivatization for liquid chromatography, 11450