Quan điểm về Phát triển Piezoceramics Không Chì
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jaffe B., 1971, Piezoelectric Ceramics
Uchino K., 1997, Piezoelectric Actuators and Ultrasonic Motors
Setter N., 2005, Piezoelectric Materials and Devices
Lubitz K., 2002, Piezoelectric Materials and Devices, 183
Zupan M., 2002, Actuator Classification and Selection—The Development of a Database, Adv. Eng. Mater., 4, 933, 10.1002/adem.200290009
Kungl H., 2007, Temperature Dependence of Poling Strain and Strain Under High Electric Fields in LaSr‐Doped Morphotropic PZT and its Relation to Changes in Structural Characteristics, Acta Mater., 55, 5780, 10.1016/j.actamat.2007.06.035
Fett T., 1999, Ceramics—Mechanical Properties, Failure Behaviour, Materials Selection
Lawn B. R., 1983, Physics of Fracture, J. Am. Ceram. Soc., 66, 83, 10.1111/j.1151-2916.1983.tb09980.x
Kamlah M., 2001, Finite Element Analysis of Piezoceramic Components Taking Into Account Ferroelectric Hysteresis Behavior, Int. J. Sol. Struct., 38, 605, 10.1016/S0020-7683(00)00055-X
2003, EU‐Directive 2002/96/EC, Waste Electrical and Electronic Equipment (WEEE), 46, 24
2003, EU‐Directive 2002/95/EC, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), 46, 19
Wada S., 2005, Enhanced Piezoelectric Properties of Barium Titanate Single Crystals with Different Engineered‐Domain Sizes, J. Appl. Phys., 98, 014109, 10.1063/1.1957130
Takenaka T., 2005, Current Status and Prospects of Lead‐Free Piezoelectric Ceramics, J. Eur. Ceram. Soc., 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125
Elkechai O., 1996, Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) System, A Structural and Electrical Study, 157, 499
Shrout T. R., 2007, Lead‐Free Piezoelectric Ceramics, Alternatives for PZT, 19, 113
“Verordnung zur Reduktion von Risiken beim Umgang mit bestimmten besonders gefährlichen Stoffen Zubereitungen und Gegenständen (Chemikalien‐Risikoreduktions‐Verordnung ChemRRV).” Amtliche Sammlung des Bundesrechts (Swiss Federal Legislation) [AS 2005 2917] 2005.
“Regulations Relating to Restrictions on the Manufacture Import Export Sale and Use of Chemicals and Other Products Hazardous to Health and the Environment.” Produktforskriften (Product Regulations Norway) 2004.
“Solid Waste: Hazardous Electronic Waste.” U.S. California Senate Bill No. 20 2003.
“Solid Waste: Hazardous Electronic Waste.” U.S. California Senate Bill No. 50 2004.
“Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment.” Ministry of Environment and Forestry Turkey Regulation No. 26891 2008.
“Act for Resource Recycling of Electrical and Electronic Equipment and Vehicles.” Environment and Labor Committee of the National Assembly of Korea Bill No. 6319 2007.
“Law for Promotion of Effective Utilization of Resources.” Minister of Economy Trade and Industry Japan 2001.
“The Marking for Presence of the Specific Chemical Substances for Electrical and Electronic Equipment.” Japan Electronics and Information Technology Industries Association JIS C 0950 2005.
“Measures for the Administration on Pollution Control of Electronic Information Products.” Ministry of Information Industry China Order No. 39 2006.
“Preliminary Environmental and Economic Assessment of Australian RoHS Policy.” Hyder Consulting Pty Ltd for the Department of Environment and Water Resources 2007.
Nye J. F., 1993, Physical Properties of Crystals
Newnham R. E., 2005, Properties of Materials: Anisotropy, Symmetry, Structure
“European Standard EN 50341‐2: Piezoelectric Properties of Ceramic Materials and Components. Part 2: Methods of Measurement—Low power ”2002.
Uchino K., 1981, Electrostrictive Effects in Anti‐Ferroelectric Perovskites, J. Appl. Phys., 52, 1455, 10.1063/1.329780
Kerkamm I., 2009, Correlation of Small‐ and Large‐Signal Properties of Lead Zirconate Titanate Multilayer Actuators, Acta Mater., 57, 77, 10.1016/j.actamat.2008.08.057
Zhang Q. M., 1988, Domain‐Wall Excitations and Their Contributions to the Weak‐Signal Response of Doped Lead Zirconate Titanate Ceramics, J. Appl. Phys., 64, 6445, 10.1063/1.342059
Balke N., 2007, Fatigue of Lead Zirconate Titanate Ceramics II, Sesquipolar Loading, 90, 1088
Nakamura K., 2000, Orientation Dependence of Electromechanical Coupling Factors in KNbO3, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 750, 10.1109/58.842064
Randall C. A., 2005, High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge, J. Electroceram., 14, 177, 10.1007/s10832-005-0956-5
Kari N. M., 2000, Investigation of Potassium Niobate as an Ultrasonic Transducer Material, Ultrason. Symp. Puertorico, 2, 1064
Davis M., 2007, Large and Stable Thickness Coupling Coefficients of [001]C‐Oriented KNbO3 and Li‐Modified (K,Na)NbO3 Single Crystals, Appl. Phys. Lett., 90, 062904‐3, 10.1063/1.2472524
“Safety Data Sheet Lead Coarse Powder GR for Analysis ” Merck Catalogue No. 107362 Merck Chemicals Ltd Available athttp://www.chemdat.info 2006.
“Safety Data Sheet Lead Zirconium Titanium Oxide Sputtering Target ” Stock number: 41068 Alfa Aesar GmbH & Co.KG Available athttp://www.alfa‐chemcat.com 2008Alpha Aesar.
“Safety Data Sheet Lead (II) Oxide ” Stock number: 14240 Alfa Aesar GmbH & Co.KG Available athttp://www.alfa‐chemcat.com 2008 Alpha Aesar.
“IOSHIC: Identification Classification and Labelling of Chemicals.” International Occupational Safety & Health Information Centre. Available athttp://www.ilo.org(accessed October 7 2008).
Brown R. D., Minerals Yearbook, Vol. I, Metals & Minerals, 1
Rodilla V., 1998, Exposure of Cultured Human Proximal Tubular Cells to Cadmium, Mercury, Zinc and Bismuth, Toxicity and Metallothionein Induction, 115, 71
Sano Y., 2005, Oral Toxicity of Bismuth in Rat, Single and 28-Day Repeated Administration Studies, 47, 293
Haertling G. H., 1999, Ferroelectric Ceramics, History and Technology, 82, 797
Damjanovic D., 2001, Piezoelectric Properties of Perovskite Ferroelectrics, Unsolved Problems and Future Research, 26, 99
Bellaiche L., 2002, Piezoelectricity of Ferroelectric Perovskites from First Principles, Curr. Opin. Solid State Mater. Sci., 6, 19, 10.1016/S1359-0286(02)00017-7
Goldschmidt V. M., 1926, Geochemische Verteilungsgesetze der Elemente. VII, Die Gesetze der Krystallochemie, 2, 5
Keeble D. J., 2007, Cation Vacancies in Ferroelectric PbTiO3 and Pb(Zr,Ti)O3, A Positron Annihilation Lifetime Spectroscopy Study, 76, 144109
Suchomel M. R., 2004, Predicting the Position of the Morphotropic Phase Boundary in High Temperature PbTiO3–Bi(B′B′′)O3 Based Dielectric Ceramics, J. Appl. Phys., 96, 4405, 10.1063/1.1789267
Hervieu M., 1997, A bismuth manganite with the “2212” structure, Bi2−xPbxSr1.5Ca1.5Mn2O9−delta, 132, 420
Abrahams S. C., 1966, Ferroelectric Lithium Niobate. 3. Single Crystal X‐Ray Diffraction Study at 24°C, J. Phys. Chem. Solids, 27, 997, 10.1016/0022-3697(66)90072-2
Abrahams S. C., 1966, Ferroelectric Lithium Niobate. 4. Single Crystal Neutron Diffraction Study at 24°C, J. Phys. Chem. Solids, 27, 1013, 10.1016/0022-3697(66)90073-4
Megaw H. D., 1968, A Note on Structure of Lithium Niobate LiNbO3, Acta Crystallogr., Sect. A: Found. Crystallogr., 24, 583, 10.1107/S0567739468001282
Jamieson P. B., 1968, Ferroelectric Tungsten Bronze‐Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78, J. Chem. Phys., 48, 5048, 10.1063/1.1668176
Megaw H. D., 1946, Crystal Structure of Double Oxides of the Perovskite Type, Proc. Phys. Soc., 58, 133, 10.1088/0959-5309/58/2/301
Smolenskii G. A., 1984, Ferroelectricity and Related Phenomena, 237
Baettig P., 2005, Theoretical Prediction of New High‐Performance Lead‐Free Piezoelectrics, Chem. Mater., 17, 1376, 10.1021/cm0480418
Purvis C. K., 1982, Piezoelectric and Pyroelectric Coefficients for Ferroelectric Crystals with Polarizable Molecules, Phys. Rev. B, 26, 4564, 10.1103/PhysRevB.26.4564
Birkholz M., 1995, Crystal‐Field Induced Dipoles in Heteropolar Crystals 1, Concept, 96, 325
Birkholz M., 1995, Crystal‐Field Induced Dipoles in Heteropolar Crystals 2, Physical Significance, 96, 333
Khalal A., 1999, Elastic and Piezoelectric Properties of BaTiO3 at Room Temperature, Phys. B—Condens. Matter, 271, 343, 10.1016/S0921-4526(99)00202-1
Khalal A., 1999, Elastic and Piezoelectric Properties of PbTiO3 at Room Temperature, Ferroelectr., Lett. Sect., 26, 91, 10.1080/07315179908241294
Grimes N. W., 1998, Dielectric Polarizability of Ions and the Corresponding Effective Number of Electrons, J. Phys.: Condens. Matter, 10, 3029
Cohen R. E., 1992, Origin of Ferroelectricity in Perovskite Oxides, Nature, 358, 136, 10.1038/358136a0
Hill N. A., 1999, First‐Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite, Phys. Rev. B, 59, 8759, 10.1103/PhysRevB.59.8759
Ishibashi Y., 1998, Morphotropic Phase Boundary in Solid Solution Systems of Perovskite‐Type Oxide Ferroelectrics, Jpn. J. Appl. Phys., Part 2, 37, L985, 10.1143/JJAP.37.L985
Noheda B., 2002, Structure and High‐Piezoelectricity in Lead Oxide Solid Solutions, Curr. Opin. Solid State Mater. Sci., 6, 27, 10.1016/S1359-0286(02)00015-3
Bellaiche L., 2001, Electric‐Field Induced Polarization Paths in Pb(Zr1−x Ti x )O3 Alloys, Phys. Rev. B, 64, 060103, 10.1103/PhysRevB.64.060103
Schonau K. A., 2007, Nanodomain Structure of Pb[Zr1−x Ti x ]O3 at its Morphotropic Phase Boundary, Investigations from Local to Average Structure, 75, 184117
Ganesh P., 2009, Pressure Induced Phase Transitions in PbTiO3, J. Phys.: Condens. Matter, 21, 064225
Ahart M., 2008, Origin of Morphotropic Phase Boundaries in Ferroelectrics, Nature, 451, 545, 10.1038/nature06459
Shannon R. D., 1976, Revised Effective Ionic‐Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sec. A, 32, 751, 10.1107/S0567739476001551
Takenaka T., 1997, Lead‐Free Piezoelectric Ceramics Based on (Bi1/2Na1/2)TiO3–NaNbO3, Ferroelectrics, 196, 175, 10.1080/00150199708224156
Yamada Y., 1995, Effect of B‐Ions Substitution in [(K1/2Bi1/2)–(Na1/2Bi1/2)](Ti–B)O3 System with B=Zr,Fe1/2Nb1/2, Zn1/3Nb2/3 or Mg1/3Nb2/3, Jpn. J. Appl. Phys., Part 1, 34, 5462, 10.1143/JJAP.34.5462
Kounga A. B., 2008, Morphotropic Phase Boundary in (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 Lead‐Free Piezoceramics, Appl. Phys. Lett., 92, 222902‐3, 10.1063/1.2938064
Zuo R., 2007, Phase Structures and Electrical Properties of New Lead‐Free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 Ceramics, Appl. Phys. Lett., 90, 092904‐3
Zhang S.‐T., 2007, Giant Strain in Lead‐Free Piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 System, Appl. Phys. Lett., 91, 112906‐3
Wu Y. G., 2003, Lead‐Free Piezoelectric Ceramics with Composition of (0.97−x)Na1/2Bi1/2TiO3–0.03NaNbO3–xBaTiO3, J. Mater. Sci., 38, 987, 10.1023/A:1022333427521
Li Y. M., 2005, Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–NaNbO3 Lead‐Free Ceramics, J. Electroceram., 14, 53, 10.1007/s10832-005-6584-2
Choi C.‐H., 2007, (1−x)BaTiO3–x(Na0.5K0.5)NbO3 Ceramics for Multilayer Ceramic Capacitors, Appl. Phys. Lett., 90, 132905‐3
Landis C. M., 2004, Non‐Linear Constitutive Modeling of Ferroelectrics, Curr. Opin. Solid State Mater. Sci., 8, 59, 10.1016/j.cossms.2004.03.010
Resta R., 2007, Theory of Polarization, A Modern Approach, 105, 31
Duan W. H., 2006, Theoretical Modeling and Simulations of Perovskite Ferroelectrics, From Phenomenological Approaches to ab Initio, 10, 40
Ghita M., 2005, Interplay Between A‐Site and B‐Site Driven Instabilities in Perovskites, Phys. Rev. B, 72, 054114, 10.1103/PhysRevB.72.054114
Bilc D. I., 2006, Frustration of Tilts and A‐Site Driven Ferroelectricity in KNbO3–LiNbO3 Alloys, Phys. Rev. Lett., 96, 147602, 10.1103/PhysRevLett.96.147602
Grinberg I., 2004, Silver Solid Solution Piezoelectrics, Appl. Phys. Lett., 85, 1760‐2, 10.1063/1.1787946
Fu D. S., 2007, AgNbO3, A Lead-Free Material with Large Polarization and Electromechanical Response, 90, 252907
Kagimura R., 2008, (Ba,K,La)ZrO3 as a Possible Lead‐Free Ferroelectric, Density Functional Calculations, 78, 012103
Wang H., 2007, First‐Principles Study of the Cubic Perovskites BiMO3 (M=Al, Ga, In and Sc), Phys. Rev. B, 75, 245209, 10.1103/PhysRevB.75.245209
Zylberberg J., 2007, Bismuth Aluminate, A New High-T-c Lead-Free Piezo-/Ferroelectric, 19, 6385
Mangalam R. V. K., 2008, Dielectric Properties, Thermal Decomposition and Related Aspects of BiAlO3, Solid State Commun., 146, 435, 10.1016/j.ssc.2008.03.039
Burton B. P., 2007, First Principles Phase Diagram Calculations for the System NaNbO3–KNbO3, Can Spinodal Decomposition Generate Relaxor Ferroelectricity, 91, 092907
Fuyuno I., 2005, Toyota's Production Line Leads from Lab to Road, Nature, 435, 1026, 10.1038/4351026a
M.KimuraandA.Ando “Piezoelectric Ceramic Composition”; U.S. Patent Patent No. 6083415 Murata Manufacturing Co. (JP) 1999.
Wolny W. W., 2004, European Approach to Development of New Environmentally Sustainable Electroceramics, Ceram. Int., 30, 1079, 10.1016/j.ceramint.2003.12.025
Wood E. A., 1951, Polymorphism in Potassium Niobate, Sodium Niobate, and other ABO3 Compounds, Acta Crystallogr., 4, 353, 10.1107/S0365110X51001112
Birol H., 2006, Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics, J. Eur. Ceram. Soc., 26, 861, 10.1016/j.jeurceramsoc.2004.11.022
Singh K., 2001, Dielectric Properties of Potassium Sodium Niobate Mixed System, Mater. Res. Bull., 36, 2365, 10.1016/S0025-5408(01)00711-5
Du H. L., 2006, Preparation and Piezoelectric Properties of (K0.5Na0.5)NbO3 Lead‐Free Piezoelectric Ceramics with Pressure‐Less Sintering, Mater. Sci. Eng., B, 131, 83, 10.1016/j.mseb.2006.03.039
Reisman A., 1959, Metastability in Niobate Systems, J. Am. Chem. Soc., 81, 1292, 10.1021/ja01515a008
Lanfredi S., 2003, Effect of Porosity on the Electrical Properties of Polycrystalline Sodium Niobate, II, Dielectric Behavior, 86, 2103
Zgonik M., 1993, Materials Constants of KNbO3 Relevant for Electro‐ and Acousto‐Optics, J. Appl. Phys., 74, 1287, 10.1063/1.354934
Nakamura K., 1997, Theoretical Analysis of Horizontal Shear Mode Piezoelectric Surface Acoustic Waves in Potassium Niobate, Appl. Phys. Lett., 71, 3203‐5, 10.1063/1.120290
Dubernet P., 1998, Dielectric Study of KNbO3 Ceramics Over a Large Range of Frequency (10(2)–10(9) Hz) and Temperature (300–800 K), Ferroelectrics, 211, 51, 10.1080/00150199808232333
Zhen Y. H., 2006, Normal Sintering of (K,Na)NbO3‐Based Ceramics, Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties, 89, 3669
Castro A., 2004, Sodium Niobate Ceramics Prepared by Mechanical Activation Assisted Methods, J. Eur. Ceram. Soc., 24, 941, 10.1016/S0955-2219(03)00476-X
Wu L., 2008, Influence of Compositional Ratio K/Na on Physical Properties in (K x Na1−x )NbO3 Ceramics, J. Appl. Phys., 103, 084116, 10.1063/1.2907866
Egerton L., 1968, Isostatically Hot‐Pressed Sodium–Potassium Niobate Transducer Material for Ultrasonic Devices, Am. Ceram. Soc. Bull., 47, 1151
Wu J., 2007, Compositional Dependence of Phase Structure and Electrical Properties in (K0.42Na0.58)NbO3–LiSbO3 Lead‐Free Ceramics, J. Appl. Phys., 102, 114113, 10.1063/1.2822454
Ilangovan R., 1999, Growth and Characterisation of KNbO3 Single Crystals, Mater. Sci. Technol., 15, 132, 10.1179/026708399101505653
Fisher J. G., 2007, Growth of (Na, K, Li)(Nb, Ta)O3 Single Crystals by Solid State Crystal Growth, J. Eur. Ceram. Soc., 27, 4103, 10.1016/j.jeurceramsoc.2007.02.101
Fisher J. G., 2008, Growth of Dense Single Crystals of Potassium Sodium Niobate by a Combination of Solid‐State Crystal Growth and Hot Pressing, J. Am. Ceram. Soc., 91, 1503, 10.1111/j.1551-2916.2008.02324.x
Kugler V. M., 2003, Low Temperature Growth and Characterization of (Na,K)NbO x Thin Films, J. Cryst. Growth, 254, 400, 10.1016/S0022-0248(03)01184-9
Kugler V. M., 2004, Microstructure/Dielectric Property Relationship of Low Temperature Synthesised (Na,K)NbO x Thin Films, J. Cryst. Growth, 262, 322, 10.1016/j.jcrysgro.2003.10.035
Wang X., 2002, Growth and Characterization of Na0.5K0.5NbO3 Thin Films on Polycrystalline Pt80Ir20 Substrates, J. Mater. Res., 17, 1183, 10.1557/JMR.2002.0175
Saito T., 2004, Pulsed Laser Deposition of High‐Quality (K,Na)NbO3 thin Films on SrTiO3 Substrate Using High‐Density Ceramic Targets, Jpn. J. Appl. Phys., Part 1, 43, 6627, 10.1143/JJAP.43.6627
Abazari M., 2008, Effect of Manganese Doping on Remnant Polarization and Leakage Current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 Epitaxial Thin Films on SrTiO3, Appl. Phys. Lett., 92, 212903‐3, 10.1063/1.2937000
Söderlind F., 2005, Sol–Gel Synthesis and Characterization of Na0.5K0.5NbO3 Thin Films, J. Cryst. Growth, 281, 468, 10.1016/j.jcrysgro.2005.04.044
Tanaka K., 2006, Fabrication of Highly Oriented Lead‐Free (Na, K)NbO3 Thin Films at Low Temperature by Sol–Gel Process, J. Cryst. Growth, 294, 209, 10.1016/j.jcrysgro.2006.05.041
Schroeter C., 2007, High Throughput Method for K0.5Na0.5NbO3 Thin Films Preparation by Chemical Solution Deposition, J. Eur. Ceram. Soc., 27, 3785, 10.1016/j.jeurceramsoc.2007.02.033
Cho C.‐R., 2002, C‐Axis Oriented (Na,K)NbO3 Thin Films on Si Substrates Using Metalorganic Chemical Vapor Deposition, Mater. Lett., 57, 781, 10.1016/S0167-577X(02)00872-8
Guo Y. P., 2004, Phase Transitional Behavior and Piezoelectric Properties of (Na0.5K0.5)NbO3–LiNbO3 Ceramics, Appl. Phys. Lett., 85, 4121‐3
Wang R. P., 2005, Phase Diagram and Enhanced Piezoelectricity in the Strontium Titanate Doped Potassium–Sodium Niobate Solid Solution, Phys. Status Solidi A—Appl. Mater. Sci., 202, R57
Du H., 2008, Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 91, 2903, 10.1111/j.1551-2916.2008.02528.x
Ahn C.‐W., 2007, Structural Variation and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 Ceramics, Sens. Actuators, A, 136, 255, 10.1016/j.sna.2006.10.036
Park S.‐E., 1999, Crystallographically Engineered BaTiO3 Single Crystals for High‐Performance Piezoelectrics, J. Appl. Phys., 86, 2746, 10.1063/1.371120
Wu Z., 2005, Pressure‐Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO3, Phys. Rev. Lett., 95, 037601, 10.1103/PhysRevLett.95.037601
Zhang S., 2008, Mitigation of Thermal and Fatigue Behavior in K0.5Na0.5NbO3‐Based Lead Free Piezoceramics, Appl. Phys. Lett., 92, 152904‐3, 10.1063/1.2908960
Zhang S., 2007, Modified (K0.5Na0.5)NbO3 Based Lead‐Free Piezoelectrics with Broad Temperature Usage Range, Appl. Phys. Lett., 91, 132913‐3, 10.1063/1.2794400
Akdogan E. K., 2008, Origin of High Piezoelectric Activity in Ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 Ceramics, Appl. Phys. Lett., 92, 112908‐3, 10.1063/1.2897033
Wu J. G., 2007, Effects of K/Na Ratio on the Phase Structure and Electrical Properties of (K x Na0.96−x Li0.04)(Nb0.91Ta0.05Sb0.04)O3 Lead‐Free Ceramics, Appl. Phys. Lett., 91, 252907, 10.1063/1.2827573
Wu J., 2008, Improved Temperature Stability of CaTiO3‐Modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 104, 024102, 10.1063/1.2956390
Yang Z. P., 2007, Phase Transitional Behavior and Electrical Properties of Lead‐Free (K0.44Na0.52Li0.04)(Nb0.96−x Ta x Sb0.04)O3 Piezoelectric Ceramics, Appl. Phys. Lett., 90, 042911, 10.1063/1.2436648
Wu J. G., 2008, Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3–LiSbO3 Lead‐Free Piezoelectric Ceramics, J. Am. Ceram. Soc., 91, 319, 10.1111/j.1551-2916.2007.02102.x
Ming B. Q., 2007, Piezoelectric Properties of (Li, Sb, Ta) Modified (Na,K)NbO3 Lead‐Free Ceramics, J. Appl. Phys., 101, 054103, 10.1063/1.2436923
Chang Y. F., 2007, Effects of Li Content on the Phase Structure and Electrical Properties of Lead‐Free (K0.46−x/2Na0.54−x/2Li x )(Nb0.76Ta0.20Sb0.04)O3 Ceramics, Appl. Phys. Lett., 90, 232905, 10.1063/1.2746411
Rubio‐Marcos F., 2007, Sintering and Properties of Lead‐Free (K,Na,Li)(Nb,Ta,Sb)O3 Ceramics, J. Eur. Ceram. Soc., 27, 4125, 10.1016/j.jeurceramsoc.2007.02.110
Wu J., 2007, Effects of Ag Content on the Phase Structure and Piezoelectric Properties of (K0.44x Na0.52Li0.04Ag x )(Nb0.91Ta0.05Sb0.04)O3 Lead‐Free Ceramics, Appl. Phys. Lett., 91, 132914‐3
Dai Y., 2007, Phase Transitional Behavior in K0.5Na0.5NbO3–LiTaO3 Ceramics, Appl. Phys. Lett., 90, 262903‐3
Lin D., 2007, Microstructure, Phase Transition, and Electrical Properties of (K0.5Na0.5)1−x Li x (Nb1−y Ta y )O3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 102, 034102, 10.1063/1.2761852
Kim M.‐S., 2007, Effect of Na2O Additions on the Sinterability and Piezoelectric Properties of Lead‐Free 95(Na0.5K0.5)NbO3–5LiTaO3 Ceramics, J. Eur. Ceram. Soc., 27, 4121, 10.1016/j.jeurceramsoc.2007.02.194
Chang Y., 2008, Phase Transitional Behavior, Microstructure, and Electrical Properties in Ta‐Modified [(K0.458Na0.542)0.96Li0.04]NbO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 104, 024109, 10.1063/1.2957591
Wu J. G., 2007, Piezoelectric Properties of LiSBO3‐Modified (K0.48Na0.52)NbO3 Lead‐Free Ceramics, Jpn. J. Appl. Phys., Part 1, 46, 7375, 10.1143/JJAP.46.7375
Wu J. G., 2008, Effects of K Content on the Dielectric, Piezoelectric, and Ferroelectric Properties of 0.95(K X Na1−X )NbO3–0.05LiSbO3 Lead‐Free Ceramics, J. Appl. Phys., 103, 024102, 10.1063/1.2830997
Wu J., 2008, CaTiO3‐Modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 Lead‐Free Piezoelectric Ceramics with Improved Temperature Stability, Scr. Mater., 59, 750, 10.1016/j.scriptamat.2008.06.011
Wu L., 2008, Good Temperature Stability of K0.5Na0.5NbO3 Based Lead‐Free Ceramics and their Applications in Buzzers, J. Eur. Ceram. Soc., 28, 2963, 10.1016/j.jeurceramsoc.2008.04.033
Dunmin L., 2007, Structure and Electrical Properties of K0.5Na0.5NbO3–LiSbO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 101, 074111, 10.1063/1.2715486
Zhao P., 2007, High Piezoelectric d 33 Coefficient in Li‐Modified Lead‐Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature, Appl. Phys. Lett., 90, 242909‐3, 10.1063/1.2748088
Du H. L., 2007, Effect of Poling Condition on Piezoelectric Properties of (K0.5Na0.5)NbO3–LiNbO3 Lead‐Free Piezoelectric Ceramics, Mater. Sci. Eng. B—Solid State Mater. Adv. Technol., 137, 175, 10.1016/j.mseb.2006.11.020
Du H. L., 2007, The Microstructure and Ferroelectric Properties of (K0.5Na0.5)NbO3–LiNbO3 Lead‐Free Piezoelectric Ceramics, Mater. Sci. Eng. B—Solid State Mater. Adv. Technol., 136, 165, 10.1016/j.mseb.2006.09.031
Lv Y. G., 2008, Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3 Ceramics with High Qm, Mater. Lett., 62, 3425, 10.1016/j.matlet.2008.02.079
Kroupa J., 2005, Electro‐Optic Properties of KNN–STO Lead‐Free Ceramics, J. Phys. D—Appl. Phys., 38, 679, 10.1088/0022-3727/38/5/003
Guo Y. P., 2004, Ferroelectric‐Relaxor Behavior of (Na0.5K0.5)NbO3‐Based Ceramics, J. Phys. Chem. Solids, 65, 1831, 10.1016/j.jpcs.2004.06.018
Bobnar V., 2007, Relaxorlike Dielectric Dynamics in the Lead‐Free K0.5Na0.5NbO3–SrZrO3 Ceramic System, J. Appl. Phys., 101, 074103, 10.1063/1.2717090
Chang R.‐C., 2007, An Investigation of (Na0.5K0.5)NbO3–CaTiO3 Based Lead‐Free Ceramics and Surface Acoustic Wave Devices, J. Eur. Ceram. Soc., 27, 4453, 10.1016/j.jeurceramsoc.2007.02.218
Zuo R., 2008, Na0.5K0.5NbO3–BiFeO3 Lead‐Free Piezoelectric Ceramics, J. Phys. Chem. Solids, 69, 230, 10.1016/j.jpcs.2007.08.066
Dai Y., Phase Transition Behavior and Electrical Properties of Lead‐Free (1−x)(0.98K0.5Na0.5NbO3–0.02LiTaO3)–x(0.96Bi0.5Na0.5TiO3–0.04BaTiO3) Piezoelectric Ceramics, J. Eur. Ceram. Soc., 28, 3193, 10.1016/j.jeurceramsoc.2008.05.019
Matsubara M., 2005, Piezoelectric Properties of (K0.5Na0.5)(Nb1−x Ta x )O3–K5.4CuTa10O29 Ceramics, J. Appl. Phys., 97, 114105, 10.1063/1.1926396
Chen Q., 2007, Piezoelectric Properties of K4CuNb8O23 Modified (Na0.5K0.5)NbO3 Lead‐Free Piezoceramics, J. Appl. Phys., 102, 104109, 10.1063/1.2815498
Park S.‐J., 2008, Effect of CuO on the Sintering Temperature and Piezoelectric Properties of Lead‐Free 0.95(Na0.5K0.5)NbO3–0.05CaTiO3 Ceramics, Mater. Res. Bull., 43, 3580, 10.1016/j.materresbull.2008.01.015
Park H.‐Y., 2007, Low‐Temperature Sintering and Piezoelectric Properties of CuO‐Added 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 Ceramics, J. Am. Ceram. Soc., 90, 4066, 10.1111/j.1551-2916.2007.02070.x
Lin D., 2007, Structure, Dielectric, and Piezoelectric Properties of CuO‐doped K0.5Na0.5NbO3–BaTiO3 Lead‐Free Ceramics, J. Appl. Phys., 102, 074113, 10.1063/1.2787164
Jiagang Y. W. W., 2008, Microstructure and Electrical Properties of [(K0.50Na0.50)0.95–xLi0.05Ag x ](Nb0.95Ta0.05)O3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 91, 2772, 10.1111/j.1551-2916.2008.02529.x
Lin D., 2008, Piezoelectric and Ferroelectric Properties of K x Na1−x NbO3 Lead‐Free Ceramics with MnO2 and CuO Doping, J. Alloys Compd., 461, 273, 10.1016/j.jallcom.2007.06.128
Malic B., 2008, Influence of Zirconia Addition on the Microstructure of K0.5Na0.5NbO3 Ceramics, J. Eur. Ceram. Soc., 28, 1191, 10.1016/j.jeurceramsoc.2007.11.004
Du H., 2007, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3‐Added (K0.5Na0.5)NbO3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 90, 2824, 10.1111/j.1551-2916.2007.01846.x
Hagh N. M., 2008, Lead‐Free Piezoelectric Ceramic Transducer in the Donor‐Doped K1/2Na1/2NbO3 Solid Solution System, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 214, 10.1109/TUFFC.2008.630
T.Tani T.Takeuchi andT.Kimura “Piezoelectric Ceramics and Production Process of the Same”; Patent Abstracts of Japan Patent No. 2001261435 (A) Toyota Central Res & Dev Japan 2001.
Y.‐M.Chiang S. A.Sheets G. W.Farrey N. W. I. V.Hagood A.Soukhojak andH.Wang “Electromechanical Actuators”; U.S. Patent Patent No. 7090785 Massachusetts Institute of Technology 2006.
Smolenskii G. A., 1961, New Ferroelectrics of Complex Composition. IV, Sov. Phys.—Solid State, 2, 2651
Suchanicz J., 1995, Investigations of the Phase Transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 172, 455, 10.1080/00150199508018512
Dorcet V., 2008, Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part I, First Order Rhombohedral to Orthorhombic Phase Transition, 20, 5061
Trolliard G., 2008, Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part II, Second Order Orthorhombic to Tetragonal Phase Transition, 20, 5074
Nagata H., 2004, Ceramic Transactions, 213
Hiruma Y., 2007, Grain‐Size Effect on Electrical Properties of (Bi1/2K1/2)TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 46, 1081, 10.1143/JJAP.46.1081
Wada T., 2001, Dielectric and Piezoelectric Properties of (A0.5Bi0.5)TiO3–ANbO3 (A=Na, K) Systems, Jpn. J. Appl. Phys., Part 1, 40, 5703, 10.1143/JJAP.40.5703
Popper P., 1957, Structure and Electrical Properties of Bi4Ti3O12 and its Application in Dielectrics, Trans. Br. Ceram. Soc., 56, 356
Zhou D., 2008, Sodium Bismuth Titanate‐Based Lead‐Free Piezoceramics Prepared by Aqueous Gelcasting, J. Am. Ceram. Soc., 91, 2792, 10.1111/j.1551-2916.2008.02511.x
Oh T., 2006, Phase Relation and Dielectric Properties in (Bi1/2Na1/2)1−x Ba x TiO3TiO3 Lead‐Free Ceramics, Mater. Sci. Eng., B, 132, 239, 10.1016/j.mseb.2006.02.070
Gomah‐Pettry J. R., 2004, Sodium‐Bismuth Titanate Based Lead‐Free Ferroelectric Materials, J. Eur. Ceram. Soc., 24, 1165, 10.1016/S0955-2219(03)00473-4
Dul'kin E., 2008, Detection of Phase Transitions in Sodium Bismuth Titanate‐Barium Titanate Single Crystals by Acoustic Emission, Appl. Phys. Lett., 92, 012904, 10.1063/1.2828698
Gao L., 2007, Dielectric and Ferroelectric Properties of (1−x)BaTiO3–(x)Bi1/2Na1/2TiO3 Ceramics, Ceram. Int., 33, 1041, 10.1016/j.ceramint.2006.03.006
Huang Y. Q., 2007, Compositional Effects on the Properties of (1−x)BaTiO3–xBi0.5Na0.5TiO3 Ceramics, J. Mater. Sci.: Mater. Electron., 18, 605
Suchanicz J., 2003, Structural and Dielectric Properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 Ceramics, J. Eur. Ceram. Soc., 23, 1559, 10.1016/S0955-2219(02)00406-5
Lin D., 2008, Structure and Electrical Properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 Lead‐Free Piezoelectric Ceramics, Solid State Ionics, 178, 1930
Lin D. M., 2006, Piezoelectric and Ferroelectric Properties of Lead‐Free [Bi1−y (Na1−x−y Li x )]0.5Ba y TiO3 Ceramics, J. Eur. Ceram. Soc., 26, 3247, 10.1016/j.jeurceramsoc.2005.09.038
Yang Z., 2008, Structure and Electrical Properties of (1−x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 Ceramics Near Morphotropic Phase Boundary, Mater. Res. Bull., 43, 81, 10.1016/j.materresbull.2007.02.016
Zhao S. C., 2006, Ferroelectric and Piezoelectric Properties of (Na, K)0.5Bi0.5TiO3 Lead Free Ceramics, J. Phys. D: Appl. Phys., 39, 2277, 10.1088/0022-3727/39/10/042
Oh T., 2006, Dielectric Relaxor Properties in the System of (Na1−x K x )1/2Bi1/2TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 45, 5138, 10.1143/JJAP.45.5138
Li Y. M., 2004, Dielectric and Piezoelectric Properties of Lead‐Free (Na0.5Bi0.5)TiO3–NaNbO3 Ceramics, Mater. Sci. Eng., B, 112, 5, 10.1016/j.mseb.2004.04.019
Qu Y. F., 2005, Effect of A‐Site Substitution on Crystal Component and Dielectric Properties in Bi0.5Na0.5TiO3 Ceramics, Mater. Sci. Eng., B, 121, 148, 10.1016/j.mseb.2005.03.023
Shan D., 2007, Ionic Doping Effects on Crystal Structure and Relaxation Character in Bi0.5Na0.5TiO3 Ferroelectric Ceramics, J. Mater. Res., 22, 730, 10.1557/jmr.2007.0082
Said S., 2001, Relaxor Behaviour of Low Lead and Lead Free Ferroelectric Ceramics of the Na1/2Bi1/2TiO3–PbTiO3 and Na1/2Bi1/2TiO3–K0.5Bi0.5TiO3 Systems, J. Eur. Ceram. Soc., 21, 1333, 10.1016/S0955-2219(01)00012-7
Zhang Y. R., 2008, Piezoelectric and Ferroelectric Properties of Bi‐Compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 103, 074109, 10.1063/1.2902805
Zhao S. C., 2005, Dielectric Properties of Na0.25K0.25Bi0.5TiO3 Lead‐Free Ceramics, Phys. Status Solidi A, 202, R22
Takenaka T., 2007, Lead‐Free Piezoelectric Ceramics Based on Perovskite Structures, J. Electroceram., 19, 259, 10.1007/s10832-007-9035-4
Choy S. H., 2006, 0.90(Bi1/2Na1/2)TiO3–0.05(Bi1/2K1/2)TiO3–0.05BaTiO3 Transducer for Ultrasonic Wirebonding Applications, Appl. Phys. A: Mater. Sci. Process., 84, 313, 10.1007/s00339-006-3625-x
Choy S. H., 2006, Study of Compressive Type Accelerometer Based on Lead‐Free BNKBT Piezoceramics, Appl. Phys. A: Mater. Sci. Process., 82, 715, 10.1007/s00339-005-3421-z
Dul'kin E., 2009, Acoustic Emission Study of Domain Wall Motion and Phase Transition in (1−x−y)Bi0.5Na0.5TiO3–xBaTiO3–yK0.5Na0.5NbO3 Lead‐Free Piezoceramics, Scr. Mater., 60, 251, 10.1016/j.scriptamat.2008.10.014
Zuo R., 2008, Tantalum Doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Piezoelectric Ceramics, J. Eur. Ceram. Soc., 28, 871, 10.1016/j.jeurceramsoc.2007.08.011
Pookmanee P., 2004, Effect of Sintering Temperature on Microstructure of Hydrothermally Prepared Bismuth Sodium Titanate Ceramics, J. Eur. Ceram. Soc., 24, 517, 10.1016/S0955-2219(03)00197-3
Hao J. J., 2005, Synthesis of (Bi0.5Na0.5)TiO3 Nanocrystalline Powders by Stearic Acid Gel Method, Mater. Chem. Phys., 90, 282, 10.1016/j.matchemphys.2004.05.019
Wang X. X., 2005, TiO2‐Nonstoichiometry Dependence on Piezoelectric Properties and Depolarization Temperature of (Bi1/2Na1/2)0.94Ba0.06TiO3 Lead‐Free Ceramics, Solid State Commun., 134, 659, 10.1016/j.ssc.2005.03.018
Kimura T., 2005, Fabrication of Textured Bismuth Sodium Titanate Using Excess Bismuth Oxide, Jpn. J. Appl. Phys., Part 1, 44, 8055, 10.1143/JJAP.44.8055
Motohashi T., 2007, Development of Texture in Bi0.5Na0.5TiO3 Prepared by Reactive‐Templated Grain Growth Process, J. Eur. Ceram. Soc., 27, 3633, 10.1016/j.jeurceramsoc.2007.02.003
Gao F., 2007, Microstructure and Piezoelectric Properties of Textured (Na0.84K0.16)0.5Bi0.5TiO3 Lead‐Free Ceramics, J. Eur. Ceram. Soc., 27, 3453, 10.1016/j.jeurceramsoc.2007.01.015
West D. L., 2003, Reactive‐Templated Grain Growth of Bi1/2(Na,K)1/2TiO3, Effects of Formulation on Texture Development, 86, 1132
Kimura T., 2004, Preparation of Crystallographically Textured Bi1/2Na1/2TiO3–BaTiO3 Ceramics by Reactive‐Templated Grain Growth Method, Ceram. Int., 30, 1161, 10.1016/j.ceramint.2003.12.011
Lee D. S., 2006, Characteristic of Grain Oriented (Bi0.5Na0.5)TiO3–BaTiO3 Ceramics, J. Electroceram., 17, 505, 10.1007/s10832-006-7060-3
Hosono Y., 2001, Crystal Growth and Electrical Properties of Lead‐Free Piezoelectric Material (Na1/2Bi1/2)TiO3–BaTiO3, Jpn. J. Appl. Phys., Part 1, 40, 5722, 10.1143/JJAP.40.5722
Soukhojak A. N., 2000, Superlattice in Single Crystal Barium‐Doped Sodium Bismuth Titanate, J. Phys. Chem. Solids, 61, 301, 10.1016/S0022-3697(99)00297-8
Bubesh Babu J., 2008, Inhomogeneity Issues in the Growth of Na1/2Bi1/2TiO3–BaTiO3 Single Crystals, J. Cryst. Growth, 310, 467, 10.1016/j.jcrysgro.2007.10.034
Yi X., 2005, Flux Growth and Characterization of Lead‐Free Piezoelectric Single Crystal [Bi0.5(Na1−x K x )0.5]TiO3, J. Cryst. Growth, 281, 364, 10.1016/j.jcrysgro.2005.03.068
Teranishi S., 2008, Giant Strain in Lead‐Free (Bi0.5Na0.5)TiO3‐Based Single Crystals, Appl. Phys. Lett., 92, 182905‐3, 10.1063/1.2920767
Liu H., 2008, Growth and Characterization of Mn‐Doped Na1/2Bi1/2TiO3 Lead‐Free Ferroelectric Single Crystal, Mater. Lett., 62, 2721, 10.1016/j.matlet.2008.01.027
Ge W., 2008, Growth and Characterization of Na0.5Bi0.5TiO3–BaTiO3 Lead‐Free Piezoelectric Crystal by the TSSG Method, J. Alloys Compd., 456, 503, 10.1016/j.jallcom.2007.02.120
Xu G., 2005, Growth and Some Electrical Properties of Lead‐Free Piezoelectric Crystals (Na1/2Bi1/2)TiO3 and (Na1/2Bi1/2)TiO3–BaTiO3 Prepared by a Bridgman Method, J. Cryst. Growth, 275, 113, 10.1016/j.jcrysgro.2004.10.074
Yu T., 2007, Preparation and Properties of Sol–Gel‐Derived Bi0.5Na0.5TiO3 Lead‐Free Ferroelectric Thin Film, Thin Solid Films, 515, 3563, 10.1016/j.tsf.2006.10.136
Zhou Z. H., 2004, Ferroelectric and Electrical Behavior of (Na0.5Bi0.5)TiO3 Thin Films, Appl. Phys. Lett., 85, 804‐6
Watcharapasorn A., 2007, Sintering of Fe‐Doped Bi0.5Na0.5TiO3 at <1000°C, Mater. Lett., 61, 2986, 10.1016/j.matlet.2006.10.059
Lu W. Z., 2006, Dielectric and Piezoelectric Properties of [Bi0.5(Na1−x Li x )0.5]TiO3 Lead‐Free Ceramics, Jpn. J. Appl. Phys., Part 1, 45, 8763, 10.1143/JJAP.45.8763
Nagata H., 2001, Additive Effects on Electrical Properties of (Bi1/2Na1/2)TiO3 Ferroelectric Ceramics, J. Eur. Ceram. Soc., 21, 1299, 10.1016/S0955-2219(01)00005-X
Wang X. X., 2004, Electromechanical Properties and Dielectric Behavior of (Bi1/2Na1/2)(1−1.5x)Bi x TiO3 Lead‐Free Piezoelectric Ceramics, Solid State Commun., 129, 319, 10.1016/j.ssc.2003.10.017
Marchet P., 2006, Dielectric Properties of Some Low‐Lead or Lead‐Free Perovskite‐Derived Materials, Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 Ceramics, 26, 3037
Nagata H., 1999, Lead‐Free Piezoelectric Ceramics of (Bi1/2Na1/2)TiO3–BaTiO3–BiFeO3 System, Ferroelectrics, 229, 273, 10.1080/00150199908224350
Li Y.‐M., 2005, Impedance Spectroscopy and Dielectric Properties of Na0.5Bi0.5TiO3–NaNbO3 Ceramics, Phys. B, 365, 76, 10.1016/j.physb.2005.04.039
Lee J. K., 2002, Phase Transitions and Dielectric Properties in A‐Site Ion Substituted (Na1/2Bi1/2)TiO3 Ceramics (A=Pb and Sr), J. Appl. Phys., 91, 4538, 10.1063/1.1435415
Hiruma Y., 2008, Large Electrostrain Near the Phase Transition Temperature of (Bi0.5Na0.5)TiO3–SrTiO3 Ferroelectric Ceramics, Appl. Phys. Lett., 92, 262904‐3, 10.1063/1.2955533
Zhou C. R., 2008, Effect of B‐Site Substitution by (Ni1/3Nb2/3)4+ for Ti4+ on Microstructure and Piezoelectric Properties in (Bi1/2Na1/2)TiO3 Piezoelectric Ceramics, J. Alloys Compd., 466, 563, 10.1016/j.jallcom.2007.11.094
Li H. D., 2004, Some Effects of Different Additives on Dielectric and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–BaTiO3 Morphotropic‐Phase‐Boundary Composition, Mater. Lett., 58, 1194, 10.1016/j.matlet.2003.08.034
Li H. D., 2003, Electrical Properties of La3+‐Doped (Na1/2Bi1/2)0.94Ba0.06TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 42, 7387, 10.1143/JJAP.42.7387
Fan G. F., 2007, Effects of Manganese Additive on Piezoelectric Properties of (Bi1/2Na1/2)TiO3–BaTiO3 Ferroelectric Ceramics, J. Mater. Sci., 42, 472, 10.1007/s10853-006-1084-6
Zhou X. Y., 2005, Piezoelectric Properties of Mn‐Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 Ceramics, Mater. Lett., 59, 1649, 10.1016/j.matlet.2005.01.034
Wu L., 2005, Synthesis and Properties of [Bi0.5(Na1−x Ag x )0.5]1−y Ba y TiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., Part 1, 44, 8515, 10.1143/JJAP.44.8515
Wang X. X., 2003, Piezoelectric and Dielectric Properties of CeO2‐Added (Bi1/2Na1/2)0.94Ba0.06TiO3 Lead‐Free Ceramics, Solid State Commun., 125, 395, 10.1016/S0038-1098(02)00816-5
Liu L., 2008, Effect of Sintering Temperature on the Structure and Properties of Cerium‐Doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 Piezoelectric Ceramics, J. Alloys Compd., 458, 504, 10.1016/j.jallcom.2007.04.037
Li Y., 2007, Piezoelectric and Dielectric Properties of CeO2‐Doped Bi0.5Na0.44K0.06TiO3 Lead‐Free Ceramics, Ceram. Int., 33, 95, 10.1016/j.ceramint.2005.08.001
Yoo J., 2004, Dielectric and Piezoelectric Characteristics of Lead‐Free Bi0.5(Na0.84K0.16)0.5TiO3 Ceramics Substituted with Sr, Mater. Lett., 58, 3831, 10.1016/j.matlet.2004.08.011
Lin D. M., 2005, Electrical Properties of [Bi1−z (Na1−x−y−z K x Li Y ]0.5Ba z TiO3 Multi‐Component Lead‐Free Piezoelectric Ceramics, Phys. Status Solidi A, 202, R89
Wang X. Y., 2007, Ferroelectric Properties of Lithia‐Doped (Bi0.95Na0.75K0.20)0.5Ba0.05TiO3 Ceramics, Mater. Lett., 61, 3847, 10.1016/j.matlet.2006.12.045
Yao Y. Q., 2007, Phase Transition and Piezoelectric Property of (Bi0.5Na0.5)0.94Ba0.06Zr y Ti1−y O3(y=0–0.04) Ceramics, J. Appl. Phys., 102, 094102, 10.1063/1.2803725
Peng C., 2005, Preparation and Properties of (Bi1/2Na1/2)TiO3–Ba(Ti,Zr)O3 Lead‐Free Piezoelectric Ceramics, Mater. Lett., 59, 1576, 10.1016/j.matlet.2005.01.026
Tian H., 2007, The Effects of CuO‐Doping on Dielectric and Piezoelectric Properties of Bi0.5Na0.5TiO3–Ba(Zr,Ti)O3 Lead‐Free Ceramics, J. Mater. Sci., 42, 9750, 10.1007/s10853-007-2005-z
Hiruma Y., 2007, Phase‐Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 Lead‐Free Ferroelectric Ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2493, 10.1109/TUFFC.2007.566
Ang C., 2006, High, Purely Electrostrictive Strain in Lead‐Free Dielectrics, Adv. Mater., 18, 103, 10.1002/adma.200500951
Cross L. E., 2006, Flexoelectric Effects, Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients, 41, 53