Quan điểm về Phát triển Piezoceramics Không Chì

Journal of the American Ceramic Society - Tập 92 Số 6 - Trang 1153-1177 - 2009
Jürgen Rödel1, Wook Jo1, Klaus T. P. Seifert1, E.-M. Anton1, Torsten Granzow1, Dragan Damjanović2
1Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
2Ceramics Laboratory, EPFL, 1015 Lausanne, Switzerland

Tóm tắt

Trong 5 năm qua, một khối lượng lớn công trình nghiên cứu đã được công bố về phát triển các vật liệu piezoceramic không chứa chì, nhằm thay thế chì-zirconate-titanate (PZT) như là vật liệu chính cho các thiết bị điện cơ như bộ điều khiển, cảm biến và bộ biến đổi. Trong một số ứng dụng cụ thể nhưng hạn chế, các vật liệu mới có vẻ đáp ứng đủ yêu cầu, nhưng vẫn chưa được sử dụng để thay thế PZT một cách rộng rãi hơn. Trong bài viết này, chúng tôi trình bày các hướng dẫn chung cho việc phát triển các gốm piezoelectric không chứa chì. Các nguyên tố hóa học phù hợp được lựa chọn trước tiên dựa trên cơ sở về chi phí và độ độc hại cũng như khả năng phân cực ion. Các cấu trúc tinh thể khác nhau với các nguyên tố này sau đó được xem xét dựa trên các khái niệm đơn giản, và một loạt các biểu đồ pha được mô tả với các ranh giới pha morphotropic hấp dẫn, đem lại các thuộc tính piezoelectric tốt. Cuối cùng, các bài học từ lý thuyết hàm mật độ được xem xét và sử dụng để điều chỉnh sự hiểu biết của chúng tôi dựa trên các khái niệm đơn giản hơn. Được trang bị các hướng dẫn này từ nguyên tử đến biểu đồ pha, giai đoạn phát triển hiện tại trong các vật liệu piezoceramics không chứa chì được đánh giá một cách phê bình.

Từ khóa


Tài liệu tham khảo

Jaffe B., 1971, Piezoelectric Ceramics

Uchino K., 1997, Piezoelectric Actuators and Ultrasonic Motors

Setter N., 2005, Piezoelectric Materials and Devices

10.1002/0470867965

Lubitz K., 2002, Piezoelectric Materials and Devices, 183

Zupan M., 2002, Actuator Classification and Selection—The Development of a Database, Adv. Eng. Mater., 4, 933, 10.1002/adem.200290009

10.1063/1.2959830

10.1111/j.1551-2916.2006.01450.x

Kungl H., 2007, Temperature Dependence of Poling Strain and Strain Under High Electric Fields in LaSr‐Doped Morphotropic PZT and its Relation to Changes in Structural Characteristics, Acta Mater., 55, 5780, 10.1016/j.actamat.2007.06.035

Fett T., 1999, Ceramics—Mechanical Properties, Failure Behaviour, Materials Selection

Lawn B. R., 1983, Physics of Fracture, J. Am. Ceram. Soc., 66, 83, 10.1111/j.1151-2916.1983.tb09980.x

10.1146/annurev.matsci.37.052506.084213

10.1111/j.1151-2916.2003.tb03593.x

Kamlah M., 2001, Finite Element Analysis of Piezoceramic Components Taking Into Account Ferroelectric Hysteresis Behavior, Int. J. Sol. Struct., 38, 605, 10.1016/S0020-7683(00)00055-X

10.1111/j.1151-2916.1993.tb03950.x

2003, EU‐Directive 2002/96/EC, Waste Electrical and Electronic Equipment (WEEE), 46, 24

2003, EU‐Directive 2002/95/EC, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), 46, 19

10.1103/PhysRev.96.581

10.1016/j.jeurceramsoc.2008.10.015

10.1063/1.365983

10.1063/1.122862

Wada S., 2005, Enhanced Piezoelectric Properties of Barium Titanate Single Crystals with Different Engineered‐Domain Sizes, J. Appl. Phys., 98, 014109, 10.1063/1.1957130

10.1038/nature03028

10.1143/JJAP.30.2236

Takenaka T., 2005, Current Status and Prospects of Lead‐Free Piezoelectric Ceramics, J. Eur. Ceram. Soc., 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125

Elkechai O., 1996, Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) System, A Structural and Electrical Study, 157, 499

10.1143/JJAP.38.5564

Shrout T. R., 2007, Lead‐Free Piezoelectric Ceramics, Alternatives for PZT, 19, 113

10.1007/s10832-004-5130-y

10.1143/JJAP.47.3787

10.1179/174367606X81650

“Verordnung zur Reduktion von Risiken beim Umgang mit bestimmten besonders gefährlichen Stoffen Zubereitungen und Gegenständen (Chemikalien‐Risikoreduktions‐Verordnung ChemRRV).” Amtliche Sammlung des Bundesrechts (Swiss Federal Legislation) [AS 2005 2917] 2005.

“Regulations Relating to Restrictions on the Manufacture Import Export Sale and Use of Chemicals and Other Products Hazardous to Health and the Environment.” Produktforskriften (Product Regulations Norway) 2004.

“Solid Waste: Hazardous Electronic Waste.” U.S. California Senate Bill No. 20 2003.

“Solid Waste: Hazardous Electronic Waste.” U.S. California Senate Bill No. 50 2004.

“Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment.” Ministry of Environment and Forestry Turkey Regulation No. 26891 2008.

“Act for Resource Recycling of Electrical and Electronic Equipment and Vehicles.” Environment and Labor Committee of the National Assembly of Korea Bill No. 6319 2007.

“Law for Promotion of Effective Utilization of Resources.” Minister of Economy Trade and Industry Japan 2001.

“The Marking for Presence of the Specific Chemical Substances for Electrical and Electronic Equipment.” Japan Electronics and Information Technology Industries Association JIS C 0950 2005.

“Measures for the Administration on Pollution Control of Electronic Information Products.” Ministry of Information Industry China Order No. 39 2006.

“Preliminary Environmental and Economic Assessment of Australian RoHS Policy.” Hyder Consulting Pty Ltd for the Department of Environment and Water Resources 2007.

Nye J. F., 1993, Physical Properties of Crystals

Newnham R. E., 2005, Properties of Materials: Anisotropy, Symmetry, Structure

“European Standard EN 50341‐2: Piezoelectric Properties of Ceramic Materials and Components. Part 2: Methods of Measurement—Low power ”2002.

Uchino K., 1981, Electrostrictive Effects in Anti‐Ferroelectric Perovskites, J. Appl. Phys., 52, 1455, 10.1063/1.329780

10.1143/JJAP.19.2099

Kerkamm I., 2009, Correlation of Small‐ and Large‐Signal Properties of Lead Zirconate Titanate Multilayer Actuators, Acta Mater., 57, 77, 10.1016/j.actamat.2008.08.057

Zhang Q. M., 1988, Domain‐Wall Excitations and Their Contributions to the Weak‐Signal Response of Doped Lead Zirconate Titanate Ceramics, J. Appl. Phys., 64, 6445, 10.1063/1.342059

Balke N., 2007, Fatigue of Lead Zirconate Titanate Ceramics II, Sesquipolar Loading, 90, 1088

10.1063/1.1587008

10.1016/S1359-6454(96)00062-6

10.1063/1.365981

10.1063/1.2560441

Nakamura K., 2000, Orientation Dependence of Electromechanical Coupling Factors in KNbO3, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 750, 10.1109/58.842064

10.1143/JJAP.21.1298

10.1111/j.1151-2916.1989.tb06069.x

10.1017/CBO9780511623127

Randall C. A., 2005, High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge, J. Electroceram., 14, 177, 10.1007/s10832-005-0956-5

Kari N. M., 2000, Investigation of Potassium Niobate as an Ultrasonic Transducer Material, Ultrason. Symp. Puertorico, 2, 1064

Davis M., 2007, Large and Stable Thickness Coupling Coefficients of [001]C‐Oriented KNbO3 and Li‐Modified (K,Na)NbO3 Single Crystals, Appl. Phys. Lett., 90, 062904‐3, 10.1063/1.2472524

“Safety Data Sheet Lead Coarse Powder GR for Analysis ” Merck Catalogue No. 107362 Merck Chemicals Ltd Available athttp://www.chemdat.info 2006.

“Safety Data Sheet Lead Zirconium Titanium Oxide Sputtering Target ” Stock number: 41068 Alfa Aesar GmbH & Co.KG Available athttp://www.alfa‐chemcat.com 2008Alpha Aesar.

“Safety Data Sheet Lead (II) Oxide ” Stock number: 14240 Alfa Aesar GmbH & Co.KG Available athttp://www.alfa‐chemcat.com 2008 Alpha Aesar.

“IOSHIC: Identification Classification and Labelling of Chemicals.” International Occupational Safety & Health Information Centre. Available athttp://www.ilo.org(accessed October 7 2008).

Brown R. D., Minerals Yearbook, Vol. I, Metals & Minerals, 1

Rodilla V., 1998, Exposure of Cultured Human Proximal Tubular Cells to Cadmium, Mercury, Zinc and Bismuth, Toxicity and Metallothionein Induction, 115, 71

Sano Y., 2005, Oral Toxicity of Bismuth in Rat, Single and 28-Day Repeated Administration Studies, 47, 293

Haertling G. H., 1999, Ferroelectric Ceramics, History and Technology, 82, 797

10.1016/B978-0-08-006873-2.50010-X

Damjanovic D., 2001, Piezoelectric Properties of Perovskite Ferroelectrics, Unsolved Problems and Future Research, 26, 99

Bellaiche L., 2002, Piezoelectricity of Ferroelectric Perovskites from First Principles, Curr. Opin. Solid State Mater. Sci., 6, 19, 10.1016/S1359-0286(02)00017-7

Goldschmidt V. M., 1926, Geochemische Verteilungsgesetze der Elemente. VII, Die Gesetze der Krystallochemie, 2, 5

Keeble D. J., 2007, Cation Vacancies in Ferroelectric PbTiO3 and Pb(Zr,Ti)O3, A Positron Annihilation Lifetime Spectroscopy Study, 76, 144109

Suchomel M. R., 2004, Predicting the Position of the Morphotropic Phase Boundary in High Temperature PbTiO3–Bi(B′B′′)O3 Based Dielectric Ceramics, J. Appl. Phys., 96, 4405, 10.1063/1.1789267

10.1143/JJAP.13.1572

Hervieu M., 1997, A bismuth manganite with the “2212” structure, Bi2−xPbxSr1.5Ca1.5Mn2O9−delta, 132, 420

Abrahams S. C., 1966, Ferroelectric Lithium Niobate. 3. Single Crystal X‐Ray Diffraction Study at 24°C, J. Phys. Chem. Solids, 27, 997, 10.1016/0022-3697(66)90072-2

Abrahams S. C., 1966, Ferroelectric Lithium Niobate. 4. Single Crystal Neutron Diffraction Study at 24°C, J. Phys. Chem. Solids, 27, 1013, 10.1016/0022-3697(66)90073-4

Megaw H. D., 1968, A Note on Structure of Lithium Niobate LiNbO3, Acta Crystallogr., Sect. A: Found. Crystallogr., 24, 583, 10.1107/S0567739468001282

Jamieson P. B., 1968, Ferroelectric Tungsten Bronze‐Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78, J. Chem. Phys., 48, 5048, 10.1063/1.1668176

Megaw H. D., 1946, Crystal Structure of Double Oxides of the Perovskite Type, Proc. Phys. Soc., 58, 133, 10.1088/0959-5309/58/2/301

Smolenskii G. A., 1984, Ferroelectricity and Related Phenomena, 237

Baettig P., 2005, Theoretical Prediction of New High‐Performance Lead‐Free Piezoelectrics, Chem. Mater., 17, 1376, 10.1021/cm0480418

Mahan G. D., 1992, Ionic Polarization, Ferroelectrics, 136, 57, 10.1080/00150199208016066

Purvis C. K., 1982, Piezoelectric and Pyroelectric Coefficients for Ferroelectric Crystals with Polarizable Molecules, Phys. Rev. B, 26, 4564, 10.1103/PhysRevB.26.4564

Birkholz M., 1995, Crystal‐Field Induced Dipoles in Heteropolar Crystals 1, Concept, 96, 325

Birkholz M., 1995, Crystal‐Field Induced Dipoles in Heteropolar Crystals 2, Physical Significance, 96, 333

Khalal A., 1999, Elastic and Piezoelectric Properties of BaTiO3 at Room Temperature, Phys. B—Condens. Matter, 271, 343, 10.1016/S0921-4526(99)00202-1

Khalal A., 1999, Elastic and Piezoelectric Properties of PbTiO3 at Room Temperature, Ferroelectr., Lett. Sect., 26, 91, 10.1080/07315179908241294

10.1063/1.353856

Grimes N. W., 1998, Dielectric Polarizability of Ions and the Corresponding Effective Number of Electrons, J. Phys.: Condens. Matter, 10, 3029

Cohen R. E., 1992, Origin of Ferroelectricity in Perovskite Oxides, Nature, 358, 136, 10.1038/358136a0

Hill N. A., 1999, First‐Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite, Phys. Rev. B, 59, 8759, 10.1103/PhysRevB.59.8759

10.1111/j.1551-2916.2005.00671.x

Ishibashi Y., 1998, Morphotropic Phase Boundary in Solid Solution Systems of Perovskite‐Type Oxide Ferroelectrics, Jpn. J. Appl. Phys., Part 2, 37, L985, 10.1143/JJAP.37.L985

Noheda B., 2002, Structure and High‐Piezoelectricity in Lead Oxide Solid Solutions, Curr. Opin. Solid State Mater. Sci., 6, 27, 10.1016/S1359-0286(02)00015-3

10.1103/PhysRevLett.86.3891

Bellaiche L., 2001, Electric‐Field Induced Polarization Paths in Pb(Zr1−x Ti x )O3 Alloys, Phys. Rev. B, 64, 060103, 10.1103/PhysRevB.64.060103

10.1063/1.123756

Schonau K. A., 2007, Nanodomain Structure of Pb[Zr1−x Ti x ]O3 at its Morphotropic Phase Boundary, Investigations from Local to Average Structure, 75, 184117

10.1103/PhysRevB.70.184123

Ganesh P., 2009, Pressure Induced Phase Transitions in PbTiO3, J. Phys.: Condens. Matter, 21, 064225

Ahart M., 2008, Origin of Morphotropic Phase Boundaries in Ferroelectrics, Nature, 451, 545, 10.1038/nature06459

Shannon R. D., 1976, Revised Effective Ionic‐Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sec. A, 32, 751, 10.1107/S0567739476001551

10.1143/JJAP.40.5999

10.1143/JJAP.43.6662

10.1143/JJAP.44.L1361

Takenaka T., 1997, Lead‐Free Piezoelectric Ceramics Based on (Bi1/2Na1/2)TiO3–NaNbO3, Ferroelectrics, 196, 175, 10.1080/00150199708224156

10.1111/j.1551-2916.2007.01767.x

10.1111/j.1151-2916.2003.tb03562.x

Yamada Y., 1995, Effect of B‐Ions Substitution in [(K1/2Bi1/2)–(Na1/2Bi1/2)](Ti–B)O3 System with B=Zr,Fe1/2Nb1/2, Zn1/3Nb2/3 or Mg1/3Nb2/3, Jpn. J. Appl. Phys., Part 1, 34, 5462, 10.1143/JJAP.34.5462

Kounga A. B., 2008, Morphotropic Phase Boundary in (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 Lead‐Free Piezoceramics, Appl. Phys. Lett., 92, 222902‐3, 10.1063/1.2938064

Zuo R., 2007, Phase Structures and Electrical Properties of New Lead‐Free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 Ceramics, Appl. Phys. Lett., 90, 092904‐3

10.1063/1.371953

Zhang S.‐T., 2007, Giant Strain in Lead‐Free Piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 System, Appl. Phys. Lett., 91, 112906‐3

10.1063/1.2838472

10.1063/1.2838476

Wu Y. G., 2003, Lead‐Free Piezoelectric Ceramics with Composition of (0.97−x)Na1/2Bi1/2TiO3–0.03NaNbO3–xBaTiO3, J. Mater. Sci., 38, 987, 10.1023/A:1022333427521

Li Y. M., 2005, Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–NaNbO3 Lead‐Free Ceramics, J. Electroceram., 14, 53, 10.1007/s10832-005-6584-2

10.1143/JJAP.44.4350

Choi C.‐H., 2007, (1−x)BaTiO3–x(Na0.5K0.5)NbO3 Ceramics for Multilayer Ceramic Capacitors, Appl. Phys. Lett., 90, 132905‐3

Landis C. M., 2004, Non‐Linear Constitutive Modeling of Ferroelectrics, Curr. Opin. Solid State Mater. Sci., 8, 59, 10.1016/j.cossms.2004.03.010

Resta R., 2007, Theory of Polarization, A Modern Approach, 105, 31

Duan W. H., 2006, Theoretical Modeling and Simulations of Perovskite Ferroelectrics, From Phenomenological Approaches to ab Initio, 10, 40

Ghita M., 2005, Interplay Between A‐Site and B‐Site Driven Instabilities in Perovskites, Phys. Rev. B, 72, 054114, 10.1103/PhysRevB.72.054114

10.1063/1.2128049

Bilc D. I., 2006, Frustration of Tilts and A‐Site Driven Ferroelectricity in KNbO3–LiNbO3 Alloys, Phys. Rev. Lett., 96, 147602, 10.1103/PhysRevLett.96.147602

Grinberg I., 2004, Silver Solid Solution Piezoelectrics, Appl. Phys. Lett., 85, 1760‐2, 10.1063/1.1787946

Fu D. S., 2007, AgNbO3, A Lead-Free Material with Large Polarization and Electromechanical Response, 90, 252907

Kagimura R., 2008, (Ba,K,La)ZrO3 as a Possible Lead‐Free Ferroelectric, Density Functional Calculations, 78, 012103

Wang H., 2007, First‐Principles Study of the Cubic Perovskites BiMO3 (M=Al, Ga, In and Sc), Phys. Rev. B, 75, 245209, 10.1103/PhysRevB.75.245209

10.1021/cm052020b

Zylberberg J., 2007, Bismuth Aluminate, A New High-T-c Lead-Free Piezo-/Ferroelectric, 19, 6385

Mangalam R. V. K., 2008, Dielectric Properties, Thermal Decomposition and Related Aspects of BiAlO3, Solid State Commun., 146, 435, 10.1016/j.ssc.2008.03.039

Burton B. P., 2007, First Principles Phase Diagram Calculations for the System NaNbO3–KNbO3, Can Spinodal Decomposition Generate Relaxor Ferroelectricity, 91, 092907

Fuyuno I., 2005, Toyota's Production Line Leads from Lab to Road, Nature, 435, 1026, 10.1038/4351026a

M.KimuraandA.Ando “Piezoelectric Ceramic Composition”; U.S. Patent Patent No. 6083415 Murata Manufacturing Co. (JP) 1999.

Wolny W. W., 2004, European Approach to Development of New Environmentally Sustainable Electroceramics, Ceram. Int., 30, 1079, 10.1016/j.ceramint.2003.12.025

10.1103/PhysRev.93.672

10.1103/PhysRev.82.727

Wood E. A., 1951, Polymorphism in Potassium Niobate, Sodium Niobate, and other ABO3 Compounds, Acta Crystallogr., 4, 353, 10.1107/S0365110X51001112

10.1111/j.1151-2916.1959.tb12971.x

Birol H., 2006, Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics, J. Eur. Ceram. Soc., 26, 861, 10.1016/j.jeurceramsoc.2004.11.022

Singh K., 2001, Dielectric Properties of Potassium Sodium Niobate Mixed System, Mater. Res. Bull., 36, 2365, 10.1016/S0025-5408(01)00711-5

Du H. L., 2006, Preparation and Piezoelectric Properties of (K0.5Na0.5)NbO3 Lead‐Free Piezoelectric Ceramics with Pressure‐Less Sintering, Mater. Sci. Eng., B, 131, 83, 10.1016/j.mseb.2006.03.039

10.1016/0025-5408(75)90002-1

Reisman A., 1959, Metastability in Niobate Systems, J. Am. Chem. Soc., 81, 1292, 10.1021/ja01515a008

10.1111/j.1551-2916.2005.00347.x

10.1016/j.jeurceramsoc.2005.03.209

Lanfredi S., 2003, Effect of Porosity on the Electrical Properties of Polycrystalline Sodium Niobate, II, Dielectric Behavior, 86, 2103

Zgonik M., 1993, Materials Constants of KNbO3 Relevant for Electro‐ and Acousto‐Optics, J. Appl. Phys., 74, 1287, 10.1063/1.354934

Nakamura K., 1997, Theoretical Analysis of Horizontal Shear Mode Piezoelectric Surface Acoustic Waves in Potassium Niobate, Appl. Phys. Lett., 71, 3203‐5, 10.1063/1.120290

10.1143/JJAP.43.6692

10.1107/S0567739476000983

10.1107/S056773947800056X

Dubernet P., 1998, Dielectric Study of KNbO3 Ceramics Over a Large Range of Frequency (10(2)–10(9) Hz) and Temperature (300–800 K), Ferroelectrics, 211, 51, 10.1080/00150199808232333

10.1557/jmr.2007.0281

10.1111/j.1551-2916.2007.01962.x

10.1111/j.1551-2916.2008.02392.x

10.1016/j.scriptamat.2007.10.028

Zhen Y. H., 2006, Normal Sintering of (K,Na)NbO3‐Based Ceramics, Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties, 89, 3669

10.2298/SOS0501061R

Castro A., 2004, Sodium Niobate Ceramics Prepared by Mechanical Activation Assisted Methods, J. Eur. Ceram. Soc., 24, 941, 10.1016/S0955-2219(03)00476-X

10.1016/S1359-6454(01)00156-2

10.1080/00150190590965497

Wu L., 2008, Influence of Compositional Ratio K/Na on Physical Properties in (K x Na1−x )NbO3 Ceramics, J. Appl. Phys., 103, 084116, 10.1063/1.2907866

Egerton L., 1968, Isostatically Hot‐Pressed Sodium–Potassium Niobate Transducer Material for Ultrasonic Devices, Am. Ceram. Soc. Bull., 47, 1151

10.1111/j.1151-2916.1962.tb11127.x

10.1111/j.1151-2916.1967.tb15121.x

Wu J., 2007, Compositional Dependence of Phase Structure and Electrical Properties in (K0.42Na0.58)NbO3–LiSbO3 Lead‐Free Ceramics, J. Appl. Phys., 102, 114113, 10.1063/1.2822454

10.1111/j.1551-2916.2005.00743.x

10.1038/181178a0

10.1134/1.1578139

Ilangovan R., 1999, Growth and Characterisation of KNbO3 Single Crystals, Mater. Sci. Technol., 15, 132, 10.1179/026708399101505653

10.1063/1.2357859

10.1016/j.jcrysgro.2007.01.011

Fisher J. G., 2007, Growth of (Na, K, Li)(Nb, Ta)O3 Single Crystals by Solid State Crystal Growth, J. Eur. Ceram. Soc., 27, 4103, 10.1016/j.jeurceramsoc.2007.02.101

Fisher J. G., 2008, Growth of Dense Single Crystals of Potassium Sodium Niobate by a Combination of Solid‐State Crystal Growth and Hot Pressing, J. Am. Ceram. Soc., 91, 1503, 10.1111/j.1551-2916.2008.02324.x

Kugler V. M., 2003, Low Temperature Growth and Characterization of (Na,K)NbO x Thin Films, J. Cryst. Growth, 254, 400, 10.1016/S0022-0248(03)01184-9

Kugler V. M., 2004, Microstructure/Dielectric Property Relationship of Low Temperature Synthesised (Na,K)NbO x Thin Films, J. Cryst. Growth, 262, 322, 10.1016/j.jcrysgro.2003.10.035

Wang X., 2002, Growth and Characterization of Na0.5K0.5NbO3 Thin Films on Polycrystalline Pt80Ir20 Substrates, J. Mater. Res., 17, 1183, 10.1557/JMR.2002.0175

Saito T., 2004, Pulsed Laser Deposition of High‐Quality (K,Na)NbO3 thin Films on SrTiO3 Substrate Using High‐Density Ceramic Targets, Jpn. J. Appl. Phys., Part 1, 43, 6627, 10.1143/JJAP.43.6627

10.1063/1.124344

Abazari M., 2008, Effect of Manganese Doping on Remnant Polarization and Leakage Current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 Epitaxial Thin Films on SrTiO3, Appl. Phys. Lett., 92, 212903‐3, 10.1063/1.2937000

Söderlind F., 2005, Sol–Gel Synthesis and Characterization of Na0.5K0.5NbO3 Thin Films, J. Cryst. Growth, 281, 468, 10.1016/j.jcrysgro.2005.04.044

Tanaka K., 2006, Fabrication of Highly Oriented Lead‐Free (Na, K)NbO3 Thin Films at Low Temperature by Sol–Gel Process, J. Cryst. Growth, 294, 209, 10.1016/j.jcrysgro.2006.05.041

Schroeter C., 2007, High Throughput Method for K0.5Na0.5NbO3 Thin Films Preparation by Chemical Solution Deposition, J. Eur. Ceram. Soc., 27, 3785, 10.1016/j.jeurceramsoc.2007.02.033

Cho C.‐R., 2002, C‐Axis Oriented (Na,K)NbO3 Thin Films on Si Substrates Using Metalorganic Chemical Vapor Deposition, Mater. Lett., 57, 781, 10.1016/S0167-577X(02)00872-8

Guo Y. P., 2004, Phase Transitional Behavior and Piezoelectric Properties of (Na0.5K0.5)NbO3–LiNbO3 Ceramics, Appl. Phys. Lett., 85, 4121‐3

10.1016/j.jeurceramsoc.2007.02.103

10.1016/j.jeurceramsoc.2007.02.100

10.1063/1.2123387

10.1111/j.1551-2916.2008.02518.x

10.1143/JJAP.45.7444

10.1016/j.ssc.2003.10.026

Wang R. P., 2005, Phase Diagram and Enhanced Piezoelectricity in the Strontium Titanate Doped Potassium–Sodium Niobate Solid Solution, Phys. Status Solidi A—Appl. Mater. Sci., 202, R57

10.1557/JMR.2004.0229

10.1063/1.1989438

Du H., 2008, Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 91, 2903, 10.1111/j.1551-2916.2008.02528.x

Ahn C.‐W., 2007, Structural Variation and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 Ceramics, Sens. Actuators, A, 136, 255, 10.1016/j.sna.2006.10.036

10.1063/1.2335816

10.1143/JJAP.43.7159

Park S.‐E., 1999, Crystallographically Engineered BaTiO3 Single Crystals for High‐Performance Piezoelectrics, J. Appl. Phys., 86, 2746, 10.1063/1.371120

Wu Z., 2005, Pressure‐Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO3, Phys. Rev. Lett., 95, 037601, 10.1103/PhysRevLett.95.037601

10.1143/JJAP.44.6136

10.1063/1.2752799

Zhang S., 2008, Mitigation of Thermal and Fatigue Behavior in K0.5Na0.5NbO3‐Based Lead Free Piezoceramics, Appl. Phys. Lett., 92, 152904‐3, 10.1063/1.2908960

Zhang S., 2007, Modified (K0.5Na0.5)NbO3 Based Lead‐Free Piezoelectrics with Broad Temperature Usage Range, Appl. Phys. Lett., 91, 132913‐3, 10.1063/1.2794400

Akdogan E. K., 2008, Origin of High Piezoelectric Activity in Ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 Ceramics, Appl. Phys. Lett., 92, 112908‐3, 10.1063/1.2897033

Wu J. G., 2007, Effects of K/Na Ratio on the Phase Structure and Electrical Properties of (K x Na0.96−x Li0.04)(Nb0.91Ta0.05Sb0.04)O3 Lead‐Free Ceramics, Appl. Phys. Lett., 91, 252907, 10.1063/1.2827573

Wu J., 2008, Improved Temperature Stability of CaTiO3‐Modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 104, 024102, 10.1063/1.2956390

10.1016/j.jpcs.2008.01.003

Yang Z. P., 2007, Phase Transitional Behavior and Electrical Properties of Lead‐Free (K0.44Na0.52Li0.04)(Nb0.96−x Ta x Sb0.04)O3 Piezoelectric Ceramics, Appl. Phys. Lett., 90, 042911, 10.1063/1.2436648

Wu J. G., 2008, Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3–LiSbO3 Lead‐Free Piezoelectric Ceramics, J. Am. Ceram. Soc., 91, 319, 10.1111/j.1551-2916.2007.02102.x

Ming B. Q., 2007, Piezoelectric Properties of (Li, Sb, Ta) Modified (Na,K)NbO3 Lead‐Free Ceramics, J. Appl. Phys., 101, 054103, 10.1063/1.2436923

10.1111/j.1551-2916.2007.01631.x

Chang Y. F., 2007, Effects of Li Content on the Phase Structure and Electrical Properties of Lead‐Free (K0.46−x/2Na0.54−x/2Li x )(Nb0.76Ta0.20Sb0.04)O3 Ceramics, Appl. Phys. Lett., 90, 232905, 10.1063/1.2746411

Rubio‐Marcos F., 2007, Sintering and Properties of Lead‐Free (K,Na,Li)(Nb,Ta,Sb)O3 Ceramics, J. Eur. Ceram. Soc., 27, 4125, 10.1016/j.jeurceramsoc.2007.02.110

Wu J., 2007, Effects of Ag Content on the Phase Structure and Piezoelectric Properties of (K0.44x Na0.52Li0.04Ag x )(Nb0.91Ta0.05Sb0.04)O3 Lead‐Free Ceramics, Appl. Phys. Lett., 91, 132914‐3

10.1016/j.matlet.2004.07.057

Dai Y., 2007, Phase Transitional Behavior in K0.5Na0.5NbO3–LiTaO3 Ceramics, Appl. Phys. Lett., 90, 262903‐3

10.1111/j.1551-2916.2007.02130.x

10.1080/00150190600732512

Lin D., 2007, Microstructure, Phase Transition, and Electrical Properties of (K0.5Na0.5)1−x Li x (Nb1−y Ta y )O3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 102, 034102, 10.1063/1.2761852

Kim M.‐S., 2007, Effect of Na2O Additions on the Sinterability and Piezoelectric Properties of Lead‐Free 95(Na0.5K0.5)NbO3–5LiTaO3 Ceramics, J. Eur. Ceram. Soc., 27, 4121, 10.1016/j.jeurceramsoc.2007.02.194

Chang Y., 2008, Phase Transitional Behavior, Microstructure, and Electrical Properties in Ta‐Modified [(K0.458Na0.542)0.96Li0.04]NbO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 104, 024109, 10.1063/1.2957591

Wu J. G., 2007, Piezoelectric Properties of LiSBO3‐Modified (K0.48Na0.52)NbO3 Lead‐Free Ceramics, Jpn. J. Appl. Phys., Part 1, 46, 7375, 10.1143/JJAP.46.7375

Wu J. G., 2008, Effects of K Content on the Dielectric, Piezoelectric, and Ferroelectric Properties of 0.95(K X Na1−X )NbO3–0.05LiSbO3 Lead‐Free Ceramics, J. Appl. Phys., 103, 024102, 10.1063/1.2830997

10.1063/1.2382348

Wu J., 2008, CaTiO3‐Modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 Lead‐Free Piezoelectric Ceramics with Improved Temperature Stability, Scr. Mater., 59, 750, 10.1016/j.scriptamat.2008.06.011

Wu L., 2008, Good Temperature Stability of K0.5Na0.5NbO3 Based Lead‐Free Ceramics and their Applications in Buzzers, J. Eur. Ceram. Soc., 28, 2963, 10.1016/j.jeurceramsoc.2008.04.033

10.1016/j.msea.2006.06.034

10.1063/1.2206554

10.1016/j.ssc.2007.01.007

Dunmin L., 2007, Structure and Electrical Properties of K0.5Na0.5NbO3–LiSbO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 101, 074111, 10.1063/1.2715486

Zhao P., 2007, High Piezoelectric d 33 Coefficient in Li‐Modified Lead‐Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature, Appl. Phys. Lett., 90, 242909‐3, 10.1063/1.2748088

10.1063/1.2815750

10.1016/j.ssc.2008.03.029

Du H. L., 2007, Effect of Poling Condition on Piezoelectric Properties of (K0.5Na0.5)NbO3–LiNbO3 Lead‐Free Piezoelectric Ceramics, Mater. Sci. Eng. B—Solid State Mater. Adv. Technol., 137, 175, 10.1016/j.mseb.2006.11.020

Du H. L., 2007, The Microstructure and Ferroelectric Properties of (K0.5Na0.5)NbO3–LiNbO3 Lead‐Free Piezoelectric Ceramics, Mater. Sci. Eng. B—Solid State Mater. Adv. Technol., 136, 165, 10.1016/j.mseb.2006.09.031

10.1080/00150190390200767

10.1111/j.1551-2916.2007.01698.x

Lv Y. G., 2008, Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3 Ceramics with High Qm, Mater. Lett., 62, 3425, 10.1016/j.matlet.2008.02.079

10.1016/j.materresbull.2008.06.019

10.1111/j.1551-2916.2005.00229.x

Kroupa J., 2005, Electro‐Optic Properties of KNN–STO Lead‐Free Ceramics, J. Phys. D—Appl. Phys., 38, 679, 10.1088/0022-3727/38/5/003

Guo Y. P., 2004, Ferroelectric‐Relaxor Behavior of (Na0.5K0.5)NbO3‐Based Ceramics, J. Phys. Chem. Solids, 65, 1831, 10.1016/j.jpcs.2004.06.018

Bobnar V., 2007, Relaxorlike Dielectric Dynamics in the Lead‐Free K0.5Na0.5NbO3–SrZrO3 Ceramic System, J. Appl. Phys., 101, 074103, 10.1063/1.2717090

Chang R.‐C., 2007, An Investigation of (Na0.5K0.5)NbO3–CaTiO3 Based Lead‐Free Ceramics and Surface Acoustic Wave Devices, J. Eur. Ceram. Soc., 27, 4453, 10.1016/j.jeurceramsoc.2007.02.218

Zuo R., 2008, Na0.5K0.5NbO3–BiFeO3 Lead‐Free Piezoelectric Ceramics, J. Phys. Chem. Solids, 69, 230, 10.1016/j.jpcs.2007.08.066

Dai Y., Phase Transition Behavior and Electrical Properties of Lead‐Free (1−x)(0.98K0.5Na0.5NbO3–0.02LiTaO3)–x(0.96Bi0.5Na0.5TiO3–0.04BaTiO3) Piezoelectric Ceramics, J. Eur. Ceram. Soc., 28, 3193, 10.1016/j.jeurceramsoc.2008.05.019

Matsubara M., 2005, Piezoelectric Properties of (K0.5Na0.5)(Nb1−x Ta x )O3–K5.4CuTa10O29 Ceramics, J. Appl. Phys., 97, 114105, 10.1063/1.1926396

Chen Q., 2007, Piezoelectric Properties of K4CuNb8O23 Modified (Na0.5K0.5)NbO3 Lead‐Free Piezoceramics, J. Appl. Phys., 102, 104109, 10.1063/1.2815498

Park S.‐J., 2008, Effect of CuO on the Sintering Temperature and Piezoelectric Properties of Lead‐Free 0.95(Na0.5K0.5)NbO3–0.05CaTiO3 Ceramics, Mater. Res. Bull., 43, 3580, 10.1016/j.materresbull.2008.01.015

Park H.‐Y., 2007, Low‐Temperature Sintering and Piezoelectric Properties of CuO‐Added 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 Ceramics, J. Am. Ceram. Soc., 90, 4066, 10.1111/j.1551-2916.2007.02070.x

Lin D., 2007, Structure, Dielectric, and Piezoelectric Properties of CuO‐doped K0.5Na0.5NbO3–BaTiO3 Lead‐Free Ceramics, J. Appl. Phys., 102, 074113, 10.1063/1.2787164

10.1111/j.1551-2916.2006.01465.x

10.1143/JJAP.44.258

10.1016/j.jallcom.2008.04.065

Jiagang Y. W. W., 2008, Microstructure and Electrical Properties of [(K0.50Na0.50)0.95–xLi0.05Ag x ](Nb0.95Ta0.05)O3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 91, 2772, 10.1111/j.1551-2916.2008.02529.x

Lin D., 2008, Piezoelectric and Ferroelectric Properties of K x Na1−x NbO3 Lead‐Free Ceramics with MnO2 and CuO Doping, J. Alloys Compd., 461, 273, 10.1016/j.jallcom.2007.06.128

10.1016/j.jeurceramsoc.2005.03.127

10.1111/j.1551-2916.2006.00991.x

Malic B., 2008, Influence of Zirconia Addition on the Microstructure of K0.5Na0.5NbO3 Ceramics, J. Eur. Ceram. Soc., 28, 1191, 10.1016/j.jeurceramsoc.2007.11.004

Du H., 2007, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3‐Added (K0.5Na0.5)NbO3 Lead‐Free Ceramics, J. Am. Ceram. Soc., 90, 2824, 10.1111/j.1551-2916.2007.01846.x

Hagh N. M., 2008, Lead‐Free Piezoelectric Ceramic Transducer in the Donor‐Doped K1/2Na1/2NbO3 Solid Solution System, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 214, 10.1109/TUFFC.2008.630

10.1080/00150190600737693

T.Tani T.Takeuchi andT.Kimura “Piezoelectric Ceramics and Production Process of the Same”; Patent Abstracts of Japan Patent No. 2001261435 (A) Toyota Central Res & Dev Japan 2001.

Y.‐M.Chiang S. A.Sheets G. W.Farrey N. W. I. V.Hagood A.Soukhojak andH.Wang “Electromechanical Actuators”; U.S. Patent Patent No. 7090785 Massachusetts Institute of Technology 2006.

Smolenskii G. A., 1961, New Ferroelectrics of Complex Composition. IV, Sov. Phys.—Solid State, 2, 2651

10.1107/S0108768101020845

10.1080/00150198808223232

10.1080/00150198908017878

Suchanicz J., 1995, Investigations of the Phase Transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 172, 455, 10.1080/00150199508018512

10.1080/00150197408238042

Dorcet V., 2008, Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part I, First Order Rhombohedral to Orthorhombic Phase Transition, 20, 5061

Trolliard G., 2008, Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part II, Second Order Orthorhombic to Tetragonal Phase Transition, 20, 5074

Nagata H., 2004, Ceramic Transactions, 213

10.1143/JJAP.44.5040

Hiruma Y., 2007, Grain‐Size Effect on Electrical Properties of (Bi1/2K1/2)TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 46, 1081, 10.1143/JJAP.46.1081

Wada T., 2001, Dielectric and Piezoelectric Properties of (A0.5Bi0.5)TiO3–ANbO3 (A=Na, K) Systems, Jpn. J. Appl. Phys., Part 1, 40, 5703, 10.1143/JJAP.40.5703

Popper P., 1957, Structure and Electrical Properties of Bi4Ti3O12 and its Application in Dielectrics, Trans. Br. Ceram. Soc., 56, 356

10.1063/1.1732613

10.1143/JJAP.41.7025

10.1016/j.jeurceramsoc.2007.08.007

10.1016/j.solidstatesciences.2007.11.003

Zhou D., 2008, Sodium Bismuth Titanate‐Based Lead‐Free Piezoceramics Prepared by Aqueous Gelcasting, J. Am. Ceram. Soc., 91, 2792, 10.1111/j.1551-2916.2008.02511.x

10.1016/S0955-2219(02)00027-4

Oh T., 2006, Phase Relation and Dielectric Properties in (Bi1/2Na1/2)1−x Ba x TiO3TiO3 Lead‐Free Ceramics, Mater. Sci. Eng., B, 132, 239, 10.1016/j.mseb.2006.02.070

Gomah‐Pettry J. R., 2004, Sodium‐Bismuth Titanate Based Lead‐Free Ferroelectric Materials, J. Eur. Ceram. Soc., 24, 1165, 10.1016/S0955-2219(03)00473-4

Dul'kin E., 2008, Detection of Phase Transitions in Sodium Bismuth Titanate‐Barium Titanate Single Crystals by Acoustic Emission, Appl. Phys. Lett., 92, 012904, 10.1063/1.2828698

Gao L., 2007, Dielectric and Ferroelectric Properties of (1−x)BaTiO3–(x)Bi1/2Na1/2TiO3 Ceramics, Ceram. Int., 33, 1041, 10.1016/j.ceramint.2006.03.006

Huang Y. Q., 2007, Compositional Effects on the Properties of (1−x)BaTiO3–xBi0.5Na0.5TiO3 Ceramics, J. Mater. Sci.: Mater. Electron., 18, 605

Suchanicz J., 2003, Structural and Dielectric Properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 Ceramics, J. Eur. Ceram. Soc., 23, 1559, 10.1016/S0955-2219(02)00406-5

Lin D., 2008, Structure and Electrical Properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 Lead‐Free Piezoelectric Ceramics, Solid State Ionics, 178, 1930

Lin D. M., 2006, Piezoelectric and Ferroelectric Properties of Lead‐Free [Bi1−y (Na1−x−y Li x )]0.5Ba y TiO3 Ceramics, J. Eur. Ceram. Soc., 26, 3247, 10.1016/j.jeurceramsoc.2005.09.038

Yang Z., 2008, Structure and Electrical Properties of (1−x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 Ceramics Near Morphotropic Phase Boundary, Mater. Res. Bull., 43, 81, 10.1016/j.materresbull.2007.02.016

10.1143/JJAP.45.4493

Zhao S. C., 2006, Ferroelectric and Piezoelectric Properties of (Na, K)0.5Bi0.5TiO3 Lead Free Ceramics, J. Phys. D: Appl. Phys., 39, 2277, 10.1088/0022-3727/39/10/042

10.1111/j.1551-2916.2008.02469.x

10.1063/1.2903498

Oh T., 2006, Dielectric Relaxor Properties in the System of (Na1−x K x )1/2Bi1/2TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 45, 5138, 10.1143/JJAP.45.5138

10.1109/TUFFC.2007.336

Li Y. M., 2004, Dielectric and Piezoelectric Properties of Lead‐Free (Na0.5Bi0.5)TiO3–NaNbO3 Ceramics, Mater. Sci. Eng., B, 112, 5, 10.1016/j.mseb.2004.04.019

10.1143/JJAP.43.7556

Qu Y. F., 2005, Effect of A‐Site Substitution on Crystal Component and Dielectric Properties in Bi0.5Na0.5TiO3 Ceramics, Mater. Sci. Eng., B, 121, 148, 10.1016/j.mseb.2005.03.023

Shan D., 2007, Ionic Doping Effects on Crystal Structure and Relaxation Character in Bi0.5Na0.5TiO3 Ferroelectric Ceramics, J. Mater. Res., 22, 730, 10.1557/jmr.2007.0082

10.1154/1.1505047

Said S., 2001, Relaxor Behaviour of Low Lead and Lead Free Ferroelectric Ceramics of the Na1/2Bi1/2TiO3–PbTiO3 and Na1/2Bi1/2TiO3–K0.5Bi0.5TiO3 Systems, J. Eur. Ceram. Soc., 21, 1333, 10.1016/S0955-2219(01)00012-7

Zhang Y. R., 2008, Piezoelectric and Ferroelectric Properties of Bi‐Compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead‐Free Piezoelectric Ceramics, J. Appl. Phys., 103, 074109, 10.1063/1.2902805

Zhao S. C., 2005, Dielectric Properties of Na0.25K0.25Bi0.5TiO3 Lead‐Free Ceramics, Phys. Status Solidi A, 202, R22

10.1143/JJAP.42.7401

10.1143/JJAP.45.7409

10.1016/j.actamat.2007.01.012

10.1007/s10832-005-3301-0

10.1063/1.1890453

Takenaka T., 2007, Lead‐Free Piezoelectric Ceramics Based on Perovskite Structures, J. Electroceram., 19, 259, 10.1007/s10832-007-9035-4

Choy S. H., 2006, 0.90(Bi1/2Na1/2)TiO3–0.05(Bi1/2K1/2)TiO3–0.05BaTiO3 Transducer for Ultrasonic Wirebonding Applications, Appl. Phys. A: Mater. Sci. Process., 84, 313, 10.1007/s00339-006-3625-x

Choy S. H., 2006, Study of Compressive Type Accelerometer Based on Lead‐Free BNKBT Piezoceramics, Appl. Phys. A: Mater. Sci. Process., 82, 715, 10.1007/s00339-005-3421-z

Dul'kin E., 2009, Acoustic Emission Study of Domain Wall Motion and Phase Transition in (1−x−y)Bi0.5Na0.5TiO3–xBaTiO3–yK0.5Na0.5NbO3 Lead‐Free Piezoceramics, Scr. Mater., 60, 251, 10.1016/j.scriptamat.2008.10.014

Zuo R., 2008, Tantalum Doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Piezoelectric Ceramics, J. Eur. Ceram. Soc., 28, 871, 10.1016/j.jeurceramsoc.2007.08.011

10.1111/j.1151-2916.2003.tb03497.x

Pookmanee P., 2004, Effect of Sintering Temperature on Microstructure of Hydrothermally Prepared Bismuth Sodium Titanate Ceramics, J. Eur. Ceram. Soc., 24, 517, 10.1016/S0955-2219(03)00197-3

Hao J. J., 2005, Synthesis of (Bi0.5Na0.5)TiO3 Nanocrystalline Powders by Stearic Acid Gel Method, Mater. Chem. Phys., 90, 282, 10.1016/j.matchemphys.2004.05.019

10.1111/j.1151-2916.2003.tb03303.x

Wang X. X., 2005, TiO2‐Nonstoichiometry Dependence on Piezoelectric Properties and Depolarization Temperature of (Bi1/2Na1/2)0.94Ba0.06TiO3 Lead‐Free Ceramics, Solid State Commun., 134, 659, 10.1016/j.ssc.2005.03.018

10.1111/j.1551-2916.2004.01424.x

Kimura T., 2005, Fabrication of Textured Bismuth Sodium Titanate Using Excess Bismuth Oxide, Jpn. J. Appl. Phys., Part 1, 44, 8055, 10.1143/JJAP.44.8055

Motohashi T., 2007, Development of Texture in Bi0.5Na0.5TiO3 Prepared by Reactive‐Templated Grain Growth Process, J. Eur. Ceram. Soc., 27, 3633, 10.1016/j.jeurceramsoc.2007.02.003

10.1111/j.1151-2916.2002.tb00297.x

Gao F., 2007, Microstructure and Piezoelectric Properties of Textured (Na0.84K0.16)0.5Bi0.5TiO3 Lead‐Free Ceramics, J. Eur. Ceram. Soc., 27, 3453, 10.1016/j.jeurceramsoc.2007.01.015

West D. L., 2003, Reactive‐Templated Grain Growth of Bi1/2(Na,K)1/2TiO3, Effects of Formulation on Texture Development, 86, 1132

10.1111/j.1551-2916.2006.01023.x

Kimura T., 2004, Preparation of Crystallographically Textured Bi1/2Na1/2TiO3–BaTiO3 Ceramics by Reactive‐Templated Grain Growth Method, Ceram. Int., 30, 1161, 10.1016/j.ceramint.2003.12.011

Lee D. S., 2006, Characteristic of Grain Oriented (Bi0.5Na0.5)TiO3–BaTiO3 Ceramics, J. Electroceram., 17, 505, 10.1007/s10832-006-7060-3

Hosono Y., 2001, Crystal Growth and Electrical Properties of Lead‐Free Piezoelectric Material (Na1/2Bi1/2)TiO3–BaTiO3, Jpn. J. Appl. Phys., Part 1, 40, 5722, 10.1143/JJAP.40.5722

Soukhojak A. N., 2000, Superlattice in Single Crystal Barium‐Doped Sodium Bismuth Titanate, J. Phys. Chem. Solids, 61, 301, 10.1016/S0022-3697(99)00297-8

Bubesh Babu J., 2008, Inhomogeneity Issues in the Growth of Na1/2Bi1/2TiO3–BaTiO3 Single Crystals, J. Cryst. Growth, 310, 467, 10.1016/j.jcrysgro.2007.10.034

10.1111/j.1151-2916.1994.tb04655.x

Yi X., 2005, Flux Growth and Characterization of Lead‐Free Piezoelectric Single Crystal [Bi0.5(Na1−x K x )0.5]TiO3, J. Cryst. Growth, 281, 364, 10.1016/j.jcrysgro.2005.03.068

Teranishi S., 2008, Giant Strain in Lead‐Free (Bi0.5Na0.5)TiO3‐Based Single Crystals, Appl. Phys. Lett., 92, 182905‐3, 10.1063/1.2920767

Liu H., 2008, Growth and Characterization of Mn‐Doped Na1/2Bi1/2TiO3 Lead‐Free Ferroelectric Single Crystal, Mater. Lett., 62, 2721, 10.1016/j.matlet.2008.01.027

Ge W., 2008, Growth and Characterization of Na0.5Bi0.5TiO3–BaTiO3 Lead‐Free Piezoelectric Crystal by the TSSG Method, J. Alloys Compd., 456, 503, 10.1016/j.jallcom.2007.02.120

Xu G., 2005, Growth and Some Electrical Properties of Lead‐Free Piezoelectric Crystals (Na1/2Bi1/2)TiO3 and (Na1/2Bi1/2)TiO3–BaTiO3 Prepared by a Bridgman Method, J. Cryst. Growth, 275, 113, 10.1016/j.jcrysgro.2004.10.074

Yu T., 2007, Preparation and Properties of Sol–Gel‐Derived Bi0.5Na0.5TiO3 Lead‐Free Ferroelectric Thin Film, Thin Solid Films, 515, 3563, 10.1016/j.tsf.2006.10.136

Zhou Z. H., 2004, Ferroelectric and Electrical Behavior of (Na0.5Bi0.5)TiO3 Thin Films, Appl. Phys. Lett., 85, 804‐6

10.1007/s10971-005-6380-0

10.1016/j.matlet.2006.08.023

Watcharapasorn A., 2007, Sintering of Fe‐Doped Bi0.5Na0.5TiO3 at <1000°C, Mater. Lett., 61, 2986, 10.1016/j.matlet.2006.10.059

Lu W. Z., 2006, Dielectric and Piezoelectric Properties of [Bi0.5(Na1−x Li x )0.5]TiO3 Lead‐Free Ceramics, Jpn. J. Appl. Phys., Part 1, 45, 8763, 10.1143/JJAP.45.8763

Nagata H., 2001, Additive Effects on Electrical Properties of (Bi1/2Na1/2)TiO3 Ferroelectric Ceramics, J. Eur. Ceram. Soc., 21, 1299, 10.1016/S0955-2219(01)00005-X

Wang X. X., 2004, Electromechanical Properties and Dielectric Behavior of (Bi1/2Na1/2)(1−1.5x)Bi x TiO3 Lead‐Free Piezoelectric Ceramics, Solid State Commun., 129, 319, 10.1016/j.ssc.2003.10.017

Marchet P., 2006, Dielectric Properties of Some Low‐Lead or Lead‐Free Perovskite‐Derived Materials, Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 Ceramics, 26, 3037

10.1143/JJAP.36.6055

Nagata H., 1999, Lead‐Free Piezoelectric Ceramics of (Bi1/2Na1/2)TiO3–BaTiO3–BiFeO3 System, Ferroelectrics, 229, 273, 10.1080/00150199908224350

Li Y.‐M., 2005, Impedance Spectroscopy and Dielectric Properties of Na0.5Bi0.5TiO3–NaNbO3 Ceramics, Phys. B, 365, 76, 10.1016/j.physb.2005.04.039

10.1111/j.1151-2916.1997.tb03219.x

Lee J. K., 2002, Phase Transitions and Dielectric Properties in A‐Site Ion Substituted (Na1/2Bi1/2)TiO3 Ceramics (A=Pb and Sr), J. Appl. Phys., 91, 4538, 10.1063/1.1435415

Hiruma Y., 2008, Large Electrostrain Near the Phase Transition Temperature of (Bi0.5Na0.5)TiO3–SrTiO3 Ferroelectric Ceramics, Appl. Phys. Lett., 92, 262904‐3, 10.1063/1.2955533

10.1002/pssb.200302020

10.1111/j.1551-2916.2007.01960.x

Zhou C. R., 2008, Effect of B‐Site Substitution by (Ni1/3Nb2/3)4+ for Ti4+ on Microstructure and Piezoelectric Properties in (Bi1/2Na1/2)TiO3 Piezoelectric Ceramics, J. Alloys Compd., 466, 563, 10.1016/j.jallcom.2007.11.094

10.1080/00150190600889114

Li H. D., 2004, Some Effects of Different Additives on Dielectric and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–BaTiO3 Morphotropic‐Phase‐Boundary Composition, Mater. Lett., 58, 1194, 10.1016/j.matlet.2003.08.034

Li H. D., 2003, Electrical Properties of La3+‐Doped (Na1/2Bi1/2)0.94Ba0.06TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1, 42, 7387, 10.1143/JJAP.42.7387

10.1007/s10832-006-9869-1

Fan G. F., 2007, Effects of Manganese Additive on Piezoelectric Properties of (Bi1/2Na1/2)TiO3–BaTiO3 Ferroelectric Ceramics, J. Mater. Sci., 42, 472, 10.1007/s10853-006-1084-6

10.1111/j.1551-2916.2006.01349.x

Zhou X. Y., 2005, Piezoelectric Properties of Mn‐Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 Ceramics, Mater. Lett., 59, 1649, 10.1016/j.matlet.2005.01.034

Wu L., 2005, Synthesis and Properties of [Bi0.5(Na1−x Ag x )0.5]1−y Ba y TiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., Part 1, 44, 8515, 10.1143/JJAP.44.8515

10.1016/j.jallcom.2008.04.038

Wang X. X., 2003, Piezoelectric and Dielectric Properties of CeO2‐Added (Bi1/2Na1/2)0.94Ba0.06TiO3 Lead‐Free Ceramics, Solid State Commun., 125, 395, 10.1016/S0038-1098(02)00816-5

Liu L., 2008, Effect of Sintering Temperature on the Structure and Properties of Cerium‐Doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 Piezoelectric Ceramics, J. Alloys Compd., 458, 504, 10.1016/j.jallcom.2007.04.037

Li Y., 2007, Piezoelectric and Dielectric Properties of CeO2‐Doped Bi0.5Na0.44K0.06TiO3 Lead‐Free Ceramics, Ceram. Int., 33, 95, 10.1016/j.ceramint.2005.08.001

Yoo J., 2004, Dielectric and Piezoelectric Characteristics of Lead‐Free Bi0.5(Na0.84K0.16)0.5TiO3 Ceramics Substituted with Sr, Mater. Lett., 58, 3831, 10.1016/j.matlet.2004.08.011

10.1016/j.sna.2005.09.005

Lin D. M., 2005, Electrical Properties of [Bi1−z (Na1−x−y−z K x Li Y ]0.5Ba z TiO3 Multi‐Component Lead‐Free Piezoelectric Ceramics, Phys. Status Solidi A, 202, R89

Wang X. Y., 2007, Ferroelectric Properties of Lithia‐Doped (Bi0.95Na0.75K0.20)0.5Ba0.05TiO3 Ceramics, Mater. Lett., 61, 3847, 10.1016/j.matlet.2006.12.045

10.1016/j.actamat.2007.10.014

Yao Y. Q., 2007, Phase Transition and Piezoelectric Property of (Bi0.5Na0.5)0.94Ba0.06Zr y Ti1−y O3(y=0–0.04) Ceramics, J. Appl. Phys., 102, 094102, 10.1063/1.2803725

Peng C., 2005, Preparation and Properties of (Bi1/2Na1/2)TiO3–Ba(Ti,Zr)O3 Lead‐Free Piezoelectric Ceramics, Mater. Lett., 59, 1576, 10.1016/j.matlet.2005.01.026

Tian H., 2007, The Effects of CuO‐Doping on Dielectric and Piezoelectric Properties of Bi0.5Na0.5TiO3–Ba(Zr,Ti)O3 Lead‐Free Ceramics, J. Mater. Sci., 42, 9750, 10.1007/s10853-007-2005-z

Hiruma Y., 2007, Phase‐Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 Lead‐Free Ferroelectric Ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2493, 10.1109/TUFFC.2007.566

10.1063/1.2171799

10.1143/JJAP.45.831

Ang C., 2006, High, Purely Electrostrictive Strain in Lead‐Free Dielectrics, Adv. Mater., 18, 103, 10.1002/adma.200500951

Cross L. E., 2006, Flexoelectric Effects, Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients, 41, 53