Personalized pathology maps to quantify diffuse and focal brain damage

NeuroImage: Clinical - Tập 21 - Trang 101607 - 2019
G. Bonnier1, E. Fischi-Gomez1,2, A. Roche3,4,2, T. Hilbert3,4,2, T. Kober3,4,2, G. Krueger5, C. Granziera1,6,7
1MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
2Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland
4Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland
5Siemens Healthcare AG (HC CEMEA DI), Zürich, Switzerland
6Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
7Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland

Tài liệu tham khảo

Arbabshirani, 2017, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls, NeuroImage, 145, 137, 10.1016/j.neuroimage.2016.02.079 Aubert-Broche, 2009, Clustering of atlas-defined cortical regions based on relaxation times and proton density, NeuroImage, 47, 523, 10.1016/j.neuroimage.2009.04.079 Barta, 2015, Modeling T(1) and T(2) relaxation in bovine white matter, J. Magn. Reson., 259, 56, 10.1016/j.jmr.2015.08.001 Beeson, 2011, Positive effects of language treatment for the logopenic variant of primary progressive aphasia, J. Mol. Neurosci., 45, 724, 10.1007/s12031-011-9579-2 Bilgic, 2015, Wave-CAIPI for highly accelerated 3D imaging, Magn. Reson. Med., 73, 2152, 10.1002/mrm.25347 Bonnier, 2014, Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis, Ann. Clin. Transl. Neurol., 1, 423, 10.1002/acn3.68 Bonnier, 2015, Multicontrast MRI quantification of focal inflammation and degeneration in Multiple Sclerosis, Biomed. Res. Int., 2015, 10.1155/2015/569123 Bonnier, 2017, The combined quantification and interpretation of multiple quantitative magnetic Resonance imaging metrics enlightens longitudinal changes compatible with brain repair in relapsing-remitting Multiple Sclerosis patients, Front. Neurol., 8, 506, 10.3389/fneur.2017.00506 Bookstein, 2001, "Voxel-based morphometry" should not be used with imperfectly registered images, NeuroImage, 14, 1454, 10.1006/nimg.2001.0770 Bruck, 2002, The pathology of primary progressive multiple sclerosis, Mult. Scler., 8, 93, 10.1191/1352458502ms785rr Colliot, 2006, Individual voxel-based analysis of gray matter in focal cortical dysplasia, NeuroImage, 29, 162, 10.1016/j.neuroimage.2005.07.021 Davies, 2007, Normal-appearing grey and white matter T1 abnormality in early relapsing-remitting multiple sclerosis: a longitudinal study, Mult. Scler., 13, 169, 10.1177/1352458506070726 Deoni, 2011, Magnetic resonance relaxation and quantitative measurement in the brain, Methods Mol. Biol., 711, 65, 10.1007/978-1-61737-992-5_4 Deoni, 2008, Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T, NeuroImage, 40, 662, 10.1016/j.neuroimage.2007.11.052 Droby, 2015, A human post-mortem brain model for the standardization of multi-centre MRI studies, NeuroImage, 110, 11, 10.1016/j.neuroimage.2015.01.028 Dusek, 2013, Imaging of iron, Int. Rev. Neurobiol., 110, 195, 10.1016/B978-0-12-410502-7.00010-7 Enzinger, 2015, Nonconventional MRI and microstructural cerebral changes in multiple sclerosis, Nat. Rev. Neurol., 11, 676, 10.1038/nrneurol.2015.194 Fartaria, 2017 Fartaria, 2017 Filippi, 2007, Magnetization transfer MRI in multiple sclerosis, J. Neuroimaging, 17, 22S, 10.1111/j.1552-6569.2007.00132.x Georgiades, 2001, MR imaging of the human brain at 1.5 T: regional variations in transverse relaxation rates in the cerebral cortex, AJNR Am. J. Neuroradiol., 22, 1732 Granziera, 2015, Brain Inflammation, degeneration and plasticity in Multiple Sclerosis, 917 Granziera, 2013, Micro-structural brain alterations in aviremic HIV+ patients with minor neurocognitive disorders: a multi-contrast study at high field, PLoS One, 8, 10.1371/journal.pone.0072547 Granziera, 2014, Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T, Hum. Brain Mapp., 35, 1461, 10.1002/hbm.22266 Granziera, 2015, A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment, Neuroimage Clin., 8, 631, 10.1016/j.nicl.2015.06.003 Hasan, 2012, J. Neurol. Sci., 313, 99, 10.1016/j.jns.2011.09.015 Helms, 2015, Tissue properties from quantitative MRI, 287 Helms, 2009, In vivo quantification of the bound pool T1 in human white matter using the binary spin-bath model of progressive magnetization transfer saturation, Phys. Med. Biol., 54, N529, 10.1088/0031-9155/54/23/N01 Hilbert, 2018, Accelerated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI, J. Magn. Reson. Imaging., 48, 359, 10.1002/jmri.25972 Klaver, 2013, Grey matter damage in multiple sclerosis: a pathology perspective, Prion, 7, 66, 10.4161/pri.23499 Klein, 2010, Elastix: a toolbox for intensity-based medical image registration, IEEE Trans. Med. Imaging, 29, 196, 10.1109/TMI.2009.2035616 Kober, 2012, MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T, Investig. Radiol., 47, 346, 10.1097/RLI.0b013e31824600e9 Kruggel, 2017, Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: an ADNI study, J. Neurosci. Methods, 278, 101, 10.1016/j.jneumeth.2016.12.020 Lassmann, 2001, Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 7, 115, 10.1016/S1471-4914(00)01909-2 Lucchinetti, 2004, The pathology of primary progressive multiple sclerosis, Mult. Scler., 10, S23, 10.1191/1352458504ms1027oa MacKay, 1994, In vivo visualization of myelin water in brain magnetic resonance, Magn. Reson. Med., 31, 673, 10.1002/mrm.1910310614 MacKay, 2006, Insights into brain microstructure from the T2 distribution, Magn. Reson. Imaging., 24, 515, 10.1016/j.mri.2005.12.037 Mallik, 2014, Imaging outcomes for trials of remyelination in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry, 85, 1396, 10.1136/jnnp-2014-307650 Marques, 2010, MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, 49, 1271, 10.1016/j.neuroimage.2009.10.002 Metere, 2017, Simultaneous quantitative MRI mapping of T1, T2* and magnetic susceptibility with multi-echo MP2RAGE, PLoS One, 12, 10.1371/journal.pone.0169265 Metz, 2014, Pathologic heterogeneity persists in early active multiple sclerosis lesions, Ann. Neurol., 75, 728, 10.1002/ana.24163 Meyer, 2017, Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data, Neuroimage Clin., 14, 656, 10.1016/j.nicl.2017.02.001 Muhlau, 2009, Voxel-based morphometry in individual patients: a pilot study in early Huntington disease, AJNR Am. J. Neuroradiol., 30, 539, 10.3174/ajnr.A1390 Muhlau, 2013, White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI, Mult. Scler., 19, 1485, 10.1177/1352458513478673 Neema, 2007, T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis, J. Neuroimaging, 17, 16S, 10.1111/j.1552-6569.2007.00131.x Parry, 2002, White matter and lesion T1 relaxation times increase in parallel and correlate with disability in Multiple sclerosis, J. Neurol., 249, 1279, 10.1007/s00415-002-0837-7 Parry, 2003, MRI brain T1 relaxation time changes in MS patients increase over time in both the white matter and the cortex, J. Neuroimaging, 13, 234, 10.1111/j.1552-6569.2003.tb00184.x Polman, 2011, Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria, Ann. Neurol., 69, 292, 10.1002/ana.22366 Roche, 2014, Partial volume estimation in brain MRI revisited, Med. Image Comput. Comput. Assist. Interv., 17, 771 Romascano, 2015, Multicontrast connectometry: a new tool to assess cerebellum alterations in early relapsing-remitting multiple sclerosis, Hum. Brain Mapp., 36, 1609, 10.1002/hbm.22698 Rovira, 2013, Magnetic resonance monitoring of lesion evolution in multiple sclerosis, Ther. Adv. Neurol. Disord., 6, 298, 10.1177/1756285613484079 Sajjadi, 2013, Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases, Brain, 136, 2253, 10.1093/brain/awt118 Scarpazza, 2013, When the single matters more than the group: very high false positive rates in single case Voxel based Morphometry, NeuroImage, 70, 175, 10.1016/j.neuroimage.2012.12.045 Schmitter, 2015, An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease, Neuroimage Clin., 7, 7, 10.1016/j.nicl.2014.11.001 Seewann, 2009, Diffusely abnormal white matter in chronic Multiple sclerosis: imaging and histopathologic analysis, Arch. Neurol., 66, 601, 10.1001/archneurol.2009.57 Stephan, 2017, Computational neuroimaging strategies for single patient predictions, NeuroImage, 145, 180, 10.1016/j.neuroimage.2016.06.038 Sumpf, 2011, Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI, J. Magn. Reson. Imaging, 34, 420, 10.1002/jmri.22634 Vrenken, 2010, Diffusely abnormal white matter in progressive multiple sclerosis: in vivo quantitative MR imaging characterization and comparison between disease types, AJNR Am. J. Neuroradiol., 31, 541, 10.3174/ajnr.A1839 Wansapura, 1999, NMR relaxation times in the human brain at 30 tesla, J. Magn. Reson. Imaging, 9, 531, 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L West, 2014, Normal appearing and diffusely abnormal white matter in patients with multiple sclerosis assessed with quantitative MR, PLoS One, 9, 10.1371/journal.pone.0095161