Personal Exposure to PM2.5 in the Massive Transport System of Bogotá and Medellín, Colombia
Tóm tắt
Recent studies have shown that public transport users can be exposed to high levels of pollution emitted from their own vehicles and nearby sources. The purpose of this research is to determine the personal exposure of passengers to PM2.5 inside the vehicles of the massive public transport of two of the main and more populated cities of Colombia, Bogotá and Medellín. TM (TransMilenio powered by diesel) and SITVA (electric and gas natural vehicles) were the systems studied. Were evaluated the integration of new vehicles with technologies Euro V and Euro VI in the TM system, the impact of the weekend effect on personal exposure into public transport (TM and SITVA), and the possible differences between personal exposure regarding the ways of the systems (mixed lane or exclusive lane for TM and SITVA). To measure PM2.5 levels, a DustTrak monitor previously calibrated was used. This measurement campaigns lasted for more than 80 hours and a mean of 17000 data of PM2.5 concentrations were obtained for each route. The personal dose was calculated based on the recorded data. The mean PM2.5 concentrations and personal dose found in the research for TM are 167 µg/m³ and 2.3 µg/min, respectively, while, for SITVA they are 41 µg/m³ and 0.53 µg/min, respectively. Therefore, SITVA users have a 5 times lower personal exposure to PM2.5 than TM users. It was also found that due to the poor proportion of new TM vehicles during the monitoring period, the personal exposure in the old vehicles and in the new ones is similar. In the case of SITVA, it was evidenced that the mixed lane contributes to a high personal exposure to PM2.5 than the exclusive one.
Tài liệu tham khảo
Alcaldía de Medellín (2016) Plan de Desarrollo 2016–2019. https://www.medellin.gov.co/irj/go/km/docs/pccde-sign/SubportaldelCiudadano_2/PlandeDesarrollo_0_17/Publicaciones/Shared%20Content/Documentos/2016/PlandedesarrolloMunicipalConsolidadov229FEB16.pdf
Alcaldía Mayor de Bogotá (2016) Parámetros técnicos operacionales de la interacción de la primera línea de metro con el sistema tm. Documento Técnico Subgerencia Técnica y de Servicios.
Área Metropolitana del Valle de Aburrá (2019) SITVA Sistema Integrado del Valle de Aburrá. https://www.metropol.gov.co/movilidad/Paginas/transporte-publico/sitva.aspx
Cartenì, A., Cascetta, F., Campana, S. (2015) Underground and ground-level particulate matter concentrations in an Italian metro system. Atmospheric Environment, 101, 328–337. https://www.sciencedirect.com/science/article/abs/pii/S1352231014008954
Castillo, M., Tunarosa, I., Chacon, L., Belalcázar, L. (2019). Personalexposure to PM2.5 in the massive transportation systems ofBogota and Medellin. Poster presented at the CASAP Barranquilla, Colombia.
Cheng, Y., Liu, Z., Yan, J. (2012) Comparisons of PM10, PM2.5, Particle Number, and CO2 Levels inside Metro Trains Traveling in Underground Tunnels and on Elevated Tracks. Aerosols and Air Quality Research, 12(5). https://doi.org/10.4209/aaqr.2012.05.0127
Departamento Nacional de Planeación. (2008) Sistema público urbano de transporte masivo de pasajeros. https://spi.dnp.gov.co/App_Themes/SeguimientoProyectos/ResumenEjecutivo/0011083790000.pdf
Franco, E., Parra, R. (2016) Identifying the Ozone Weekend Effect in the air quality of the northern Andean region of Ecuador, WIT Conferences. https://www.witpress.com/Secure/elibrary/papers/AIR16/AIR16016FU1.pdf
Guevara, F. (2018) Implementación y validación de un modelo CFD para simular la dispersión de material particulado PM2.5 al interior de buses de transporte público, Universidad Nacional de Colombia. http://bdigital.unal.edu.co/70775/1/1015440187.2018.pdf
Guevara, F., Guevara, M., Belalcazar, L. (2020) Passengers Exposure to PM2.5 in Self-polluted BRT-Diesel Operated Transport System Microenvironments. Asian Journal of Atmospheric Environment, 14(2), 105–118. https://doi.org/10.5572/ajae.2020.14.2.105
Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM (2019) Características climatológicas de ciudades principales y municipios turísticos. http://www.ideam.gov.co/documents/21021/418894/Caracter%C3%ADsticas+de+Ciudades+Principales+y+Municipios+Tur%C3%ADsticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc
Krzyzanowski, M., Kuna-Dibber, B., Scheneider, J. (2005) Health effects of transport related air pollution. World Health Organization. https://books.google.com.co/books?hl=es&lr=&id=b2G3k51rd0oC&oi=fnd&pg=PR1&ots=O77r3DDpbt&sig=I5lVRy428wmbpNAZMHszhRWJS8g&redir_esc=y#v=onepage&q&f=false
Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N. (2015) Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Science of the Total Environment, 524. https://doi.org/10.1016/j.scitotenv.2015.03.088
Morales, B., Galvis, B., Rincon, J., Rincon, M., Rodriguez, A., Sarmiento, O. (2019) Personal exposure to air pollutants in a Bus Rapid Transit System: Impact of fleet age and emission standard. Atmospheric Environment, 202, 117–127. https://doi.org/10.1016/j.atmosenv.2019.01.026
Morales Betancourta, R., Galvisb, B., Balachandranc, S., Ramos-Bonillaa, J.P., Sarmientod, O.L., Gallo-Murciaa, S.M., Contrerasa, Y. (2017) Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(45). https://doi.org/10.1016/j.atmosenv.2017.03.006
Moreno, T., Reche, C., Rivas, I., Cruz Minguillón, I., Martins, V., Vargas, C., Buonanno, G., Parga, J., Pandolfi, M., Brines, M., Ealo, M., Fonseca, A., Amato, F., Sosa, G., Capdevila, M., Miguel, E., Querol, X., Gibbons, W. (2015) Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environmental Research, 142, 495–510. https://doi.org/10.1016/j.envres.2015.07.022
Nazelle, A., Bode, O., Orjuela, J. (2017) Comparison of air pollution in active vs passive travel modes in European cities: A quantitative review. Environment International 99, 151–160. https://doi.org/10.1016/j.envint.2016.12.023
Pachón, J., Galvis, B., Lombana, O., Carmona, L.G., Fajardo, S., Rincón, A., Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9, 2, 1–17. https://doi.org/10.3390/atmos9020049
Pérez, P. (2005) Retos Futuros de La Exposición Personal a Contaminantes en Aire. Revisión Salud Ambiente, 5(2). https://ojs.diffundit.com/index.php/rsa/article/view/314/273
Ramírez, O. (2018) Chemical composition and source apportionment of PM10 at an urban background site in a high altitude Latin American megacity (Bogotá, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045
Rojas, N. (2004) Revisión de las emisiones de material particulado por la combustión de diesel y biodiesel. Revista de Ingeniería - Universidad de los Andes, 20. http://www.scielo.org.co/pdf/ring/n20/n20a7.pdf
Steinle, S., Reis, S., Sabel, C. (2011) Assessment of personal exposure to air pollutants in Scotland - an integrated approach using personal monitoring data. 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011. https://pdfs.semanticscholar.org/cc87/abeac68788fd9460eebf196f9c2b043d4c0a.pdf
Suárez, L., Mesías, S., Iglesias, V., Silva, C., Cáceres, D., Ruiz-Rudolph, P. (2014) Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environmental Science: Processes & Impacts, 16, 1309–1317. https://doi.org/10.1039/c3em00648d
Tansmilenio, S.A. (2019) Nueva flota de TM representa un salto para reducir la contaminación ambiental en Bogotá. https://www.TM.gov.co/publicaciones/151130/nueva-flota-de-TM-representa-un-salto-para-reducir-la-contaminacion-ambiental-en-bogota/
Tansmilenio, S.A. (2019) TM en Cifras, Estadísticas de oferta y demanda del Sistema Integrado de Transporte Público - SITP. Informe No. 57. https://www.transmilenio.gov.co/publicaciones/151295/estadisticasde-oferta-y-demandadel-sistema-integrado-de-transportepublico---sitp---abril-2019/
TSI Incorporated. (2012) Dusttrak aerosol monitor theory of operation. TSI, Understanding Accelerated. https://www.tsi.com/getmedia/1efa3785-c52d-491e-9cd1-10f30a01c997/EXPMN-002_DustTrak_DRX_Theory_of_Operation
World Health Organization WHO (2005) Guías de calidad delaire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=E181938106212BC24FC3D62AEB3DA055?sequence=1
World Health Organization WHO (2018) Calidad del aire y salud. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health