Persistent mysteries of jet engines, formation, propagation, and particle acceleration: Have they been addressed experimentally?

New Astronomy Reviews - Tập 95 - Trang 101661 - 2022
Eric G. Blackman1, Sergey V. Lebedev2
1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
2Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Tài liệu tham khảo

Aguilera-Dena, 2018, Related progenitor models for long-duration Gamma-ray bursts and type ic superluminous supernovae, Astrophys. J., 858, 115, 10.3847/1538-4357/aabfc1 Albertazzi, 2014, Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, 346, 325, 10.1126/science.1259694 Alves, 2018, Efficient nonthermal particle acceleration by the kink instability in relativistic jets, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.245101 Ampleford, 2007, Jet deflection by a quasi-steady-state side wind in the laboratory, Astrophys. Space Sci., 307, 29, 10.1007/s10509-006-9238-1 Ampleford, 2005, Formation of working surfaces in radiatively cooled laboratory jets, Astrophys. Space Sci., 298, 241, 10.1007/s10509-005-3941-1 Ampleford, 2008, Supersonic radiatively cooled rotating flows and jets in the laboratory, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.035001 Arce, 2002, Bow shocks, wiggling jets, and wide-angle winds: A high-resolution study of the entrainment mechanism of the PV Cephei molecular (CO) outflow, Astrophys. J., 575, 928, 10.1086/341426 Asada, 2008, Multifrequency polarimetry of the NRAO 140 jet: Possible detection of a helical magnetic field and constraints on its pitch angle, Astrophys. J., 682, 798, 10.1086/588573 Baalrud, 2011, Hall magnetohydrodynamic reconnection in the plasmoid unstable regime, Phys. Plasmas, 18, 10.1063/1.3633473 Balbus, 1991, A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - nonlinear evolution, Astrophys. J., 376, 214, 10.1086/170270 Balbus, 1998, Instability, turbulence, and enhanced transport in accretion disks, Rev. Modern Phys., 70, 1, 10.1103/RevModPhys.70.1 Bally, 2007, Jets from young stars, Astrophys. Space Sci., 311, 15, 10.1007/s10509-007-9531-7 Beall, 2016, Astrophysical jets: A review, 53 Begelman, 1988, Thermal coupling of ions and electrons by collective effects in two-temperature accretion flows, Astrophys. J., 332, 872, 10.1086/166698 Bellan, 2000 Bellan, 2018, Experiments and models of MHD jets and their relevance to astrophysics and solar physics, Phys. Plasmas, 25, 10.1063/1.5009571 Bennett, 2015, Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory, High Energy Dens. Phys., 17, 63, 10.1016/j.hedp.2015.02.001 Bhat, 2014, Resilience of helical fields to turbulent diffusion - II. Direct numerical simulations, Mon. Not. R. Astron. Soc., 438, 2954, 10.1093/mnras/stt2402 Bhat, 2016, Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability, Mon. Not. R. Astron. Soc., 462, 818, 10.1093/mnras/stw1619 Bhat, 2018, Plasmoid instability in the semi-collisional regime, J. Plasma Phys., 84, 10.1017/S002237781800106X Bhattacharjee, 1986, Self-consistent dynamolike activity in turbulent plasmas, Phys. Rev. Lett., 57, 206, 10.1103/PhysRevLett.57.206 Bicknell, 1996, Understanding the Kiloparsec-scale structure of M87, Astrophys. J., 467, 597, 10.1086/177636 Blackman, 1996, Reconnecting magnetic flux tubes as a source of in situ acceleration in extragalactic radio sources, Astrophys. J. Lett., 456, L87, 10.1086/309873 Blackman, 1997, Distinguishing solar flare types by differences in reconnection regions, Astrophys. J. Lett., 484, L79, 10.1086/310763 Blackman, 1999, On particle energization in accretion flows, Mon. Not. R. Astron. Soc., 302, 723, 10.1046/j.1365-8711.1999.02139.x Blackman, 2003, Doubly helical coronal ejections from dynamos and their role in sustaining the solar cycle, ApJLl, 584, L99, 10.1086/368374 Blackman, 2000, Constraints on the magnitude of α in Dynamo theory, Astrophys. J., 534, 984, 10.1086/308767 Blackman, 2008, Dimensionless measures of turbulent magnetohydrodynamic dissipation rates, Mon. Not. R. Astron. Soc., 386, 1481, 10.1111/j.1365-2966.2008.13108.x Blackman, 2015, Motivation and challenge to capture both large-scale and local transport in next generation accretion theory, J. Plasma Phys., 81, 10.1017/S0022377815000999 Blackman, 2004, Pulsars with jets may Harbor dynamically important disks, Astrophys. J. Lett., 601, L71, 10.1086/381802 Blackman, 2009, Coronae as a consequence of large-scale magnetic fields in turbulent accretion disks, Astrophys. J. Lett., 704, L113, 10.1088/0004-637X/704/2/L113 Blackman, 2013, On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications, Mon. Not. R. Astron. Soc., 429, 1398, 10.1093/mnras/sts433 Blandford, 1982, Hydromagnetic flows from accretion discs and the production of radio jets, Mon. Not. R. Astron. Soc., 199, 883, 10.1093/mnras/199.4.883 Blandford, 1977, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433, 10.1093/mnras/179.3.433 Blue, 2005, Experimental investigation of high-mach-number 3D hydrodynamic jets at the national ignition facility, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.095005 Bocchi, 2011, Numerical study of jets produced by conical wire arrays on the magpie pulsed power generator, Astrophys. Space Sci., 336, 27, 10.1007/s10509-011-0673-2 Bocchi, 2013, Numerical simulations of Z-pinch experiments to create supersonic differentially-rotating plasma flows, High Energy Dens. Phys., 9, 108, 10.1016/j.hedp.2012.12.001 Bocchi, 2013, Numerical simulations of Z-pinch experiments to create supersonic differentially rotating plasma flows, Astrophys. J., 767, 84, 10.1088/0004-637X/767/1/84 Boozer, 1986, Ohm’s law for mean magnetic fields, J. Plasma Phys., 35, 133, 10.1017/S0022377800011181 Bott, 2020 Brandenburg, 1995, Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow, Astrophys. J., 446, 741, 10.1086/175831 Brandenburg, 2005, Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 417, 1, 10.1016/j.physrep.2005.06.005 Bujarrabal, 2001, Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae, Astron. Astrophys., 377, 868, 10.1051/0004-6361:20011090 Byvank, 2017, Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation, Phys. Plasmas, 24, 10.1063/1.5003777 Byvank, 2016, Extended magnetohydrodynamic plasma jets with external magnetic fields, IEEE Trans. Plasma Sci., 44, 638, 10.1109/TPS.2016.2530634 Campbell, 2000, An accretion disc model with a magnetic wind and turbulent viscosity, Mon. Not. R. Astron. Soc., 317, 501, 10.1046/j.1365-8711.2000.03565.x Campbell, 1999, An analytic model for magneto-viscous accretion discs, Mon. Not. R. Astron. Soc., 306, 122, 10.1046/j.1365-8711.1999.02478.x Canto, 1995, The dynamics of a jet in a supersonic side wind, Mon. Not. R. Astron. Soc., 277, 1120, 10.1093/mnras/277.3.1120 Canto, 1988, The formation of interstellar jets by the convergence of supersonic conical flows, Astron. Astrophys., 192, 287 Celotti, 2008, The power of blazar jets, Mon. Not. R. Astron. Soc., 385, 283, 10.1111/j.1365-2966.2007.12758.x Che, 2019, A brief review on particle acceleration in multi-island magnetic reconnection, J. Phys. Conf. Series, 1332, 10.1088/1742-6596/1332/1/012003 Chien, 2019, Study of a magnetically driven reconnection platform using ultrafast proton radiography, Phys. Plasmas, 26, 10.1063/1.5095960 Ciardi, 2008, Curved herbig-haro jets: Simulations and experiments, Astrophys. J., 678, 968, 10.1086/528679 Ciardi, 2002, Modeling of supersonic jet formation in conical wire array Z-pinches, Laser Particle Beams, 20, 255, 10.1017/S0263034602202153 Ciardi, 2007, The evolution of magnetic tower jets in the laboratory, Phys. Plasmas, 14, 056501, 10.1063/1.2436479 Ciardi, 2009, Episodic magnetic bubbles and jets: Astrophysical implications from laboratory experiments, Astrophys. J. Lett., 691, L147, 10.1088/0004-637X/691/2/L147 Ciardi, 2013, Astrophysics of magnetically collimated jets generated from laser-produced plasmas, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.025002 Colgate, 2015, Quasi-static model of magnetically collimated jets and radio lobes. II. Jet structure and stability, Astrophys. J., 813, 136, 10.1088/0004-637X/813/2/136 Colgate, 2014, Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets, Astrophys. J., 789, 144, 10.1088/0004-637X/789/2/144 Corbel, 2011, Microquasars: an observational review, 205 Davis, 2010, Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux, Astrophys. J., 713, 52, 10.1088/0004-637X/713/1/52 de Gouveia Dal Pino, 2005, Astrophysical jets and outflows, Adv. Space Res., 35, 908, 10.1016/j.asr.2005.03.145 del Valle, 2016, Properties of the first-order Fermi acceleration in fast magnetic reconnection driven by turbulence in collisional magnetohydrodynamical flows, Mon. Not. R. Astron. Soc., 463, 4331, 10.1093/mnras/stw2276 Durant, 2013, The Helical jet of the Vela Pulsar, Astrophys. J., 763, 72, 10.1088/0004-637X/763/2/72 Ebrahimi, 2014, Helicity-flux-driven α effect in laboratory and astrophysical plasmas, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.125003 Ebrahimi, 2009, Saturation of magnetorotational instability through magnetic field generation, Astrophys. J., 698, 233, 10.1088/0004-637X/698/1/233 Eilek, 1984, What bends 3C 465 ?, Astrophys. J., 278, 37, 10.1086/161765 Ergun, 2020, Observations of particle acceleration in magnetic reconnection-driven turbulence, Astrophys. J., 898, 154, 10.3847/1538-4357/ab9ab6 Esin, 1997, Advection-dominated accretion and the spectral states of black hole X-ray binaries: Application to Nova muscae 1991, Astrophys. J., 489, 865, 10.1086/304829 Eyink, 2013, Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence, Nature, 497, 466, 10.1038/nature12128 Farley, 1999, Radiative jet experiments of astrophysical interest using intense lasers, Phys. Rev. Lett., 83, 1982, 10.1103/PhysRevLett.83.1982 Fender, 2004, Towards a unified model for black hole X-ray binary jets, Mon. Not. R. Astron. Soc., 355, 1105, 10.1111/j.1365-2966.2004.08384.x Ferreira, 2013, Is the disc thermal state controlling the Blandford & Znajek/Blandford & Payne jet dichotomy?, 01005 Ferreira, 2006, A unified accretion-ejection paradigm for black hole X-ray binaries. I. The dynamical constituents, Astron. Astrophys., 447, 813, 10.1051/0004-6361:20052689 Field, 1993, Radiation from magnetized accretion disks in active galactic nuclei, Astrophys. J., 403, 94, 10.1086/172185 Fiksel, 2014, Magnetic reconnection between colliding magnetized laser-produced plasma plumes, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.105003 Fiuza, 2020, Electron acceleration in laboratory-produced turbulent collisionless shocks, Nat. Phys., 16, 916, 10.1038/s41567-020-0919-4 Foster, 2005, High-energy-density laboratory astrophysics studies of jets and bow shocks, Astrophys. J. Lett., 634, L77, 10.1086/498846 Fox, 2012, Magnetic reconnection in high-energy-density laser-produced plasmasa, Phys. Plasmas, 19, 10.1063/1.3694119 Fox, 2013, Filamentation instability of counterstreaming laser-driven plasmas, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.225002 Fox, 2017, Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas, Phys. Plasmas, 24, 10.1063/1.4993204 Frank, 1996, Hydrodynamical models of outflow collimation in Young Stellar objects, Astrophys. J., 472, 684, 10.1086/178099 Gabuzda, 2018, Evidence for helical magnetic fields associated with AGN jets and the action of a cosmic battery, Galaxies, 7, 5, 10.3390/galaxies7010005 Gailitis, 2018, Self-excitation in a helical liquid metal flow: the Riga dynamo experiments, J. Plasma Phys., 84, 10.1017/S0022377818000363 Gailitis, 2004, Riga dynamo experiment and its theoretical background, Phys. Plasmas, 11, 2838, 10.1063/1.1666361 Gan, 2017, Three-dimensional magnetohydrodynamical simulations of the morphology of head-tail radio galaxies based on the magnetic tower jet model, Astrophys. J., 839, 14, 10.3847/1538-4357/aa647e Gao, 2019, Mega-Gauss plasma jet creation using a ring of laser beams, Astrophys. J. Lett., 873, L11, 10.3847/2041-8213/ab07bd Garrappa, 2019, Investigation of two Fermi-LAT Gamma-ray blazars coincident with high-energy neutrinos detected by IceCube, Astrophys. J., 880, 103, 10.3847/1538-4357/ab2ada Ghisellini, 2014, The power of relativistic jets is larger than the luminosity of their accretion disks, Nature, 515, 376, 10.1038/nature13856 Gierliński, 1999, Accretion disk in CYG X-1 in the soft state, 64 Gittings, 2008, The RAGE radiation-hydrodynamic code, Comput. Sci. Discov., 1, 10.1088/1749-4699/1/1/015005 Goldreich, 1969, Pulsar electrodynamics, Astrophys. J., 157, 869, 10.1086/150119 Gopal-Krishna, 2000, Extragalactic radio sources with hybrid morphology: implications for the Fanaroff-Riley dichotomy, Astron. Astrophys., 363, 507 Gourdain, 2010, Initial experiments using radial foils on the Cornell beam research accelerator pulsed power generator, Phys. Plasmas, 17, 10.1063/1.3292653 Gourdain, 2012, Magnetohydrodynamic instabilities in radial foil configurations, Phys. Plasmas, 19, 10.1063/1.3677887 Gourdain, 2013, Impact of the hall effect on high-energy-density plasma jets, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.015002 Gregory, 2008, Astrophysical jet experiments with colliding laser-produced plasmas, Astrophys. J., 676, 420, 10.1086/527352 Guan, 2011, Radially extended, stratified, local models of isothermal disks, Astrophys. J., 728, 130, 10.1088/0004-637X/728/2/130 Guerrero, 2020, Space velocity and time span of jets in planetary Nebulae, Astrophys. J., 890, 50, 10.3847/1538-4357/ab61fa Guo, 2020 Hardee, 1992, Nonlinear dynamics of a three-dimensional jet, Astrophys. J. Lett., 400, L9, 10.1086/186636 Hare, 2017, Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments, Phys. Plasmas, 24, 10.1063/1.4986012 Hare, 2017, Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.085001 Hare, 2018, An experimental platform for pulsed-power driven magnetic reconnection, Phys. Plasmas, 25, 10.1063/1.5016280 Hartigan, 2009, Astrophys. J., 705, 1073, 10.1088/0004-637X/705/1/1073 Hawley, 2015, Disks and jets. Gravity, rotation and magnetic fields, SSR, 191, 441 Hawley, 2011, Assessing quantitative results in accretion simulations: From local to global, Astrophys. J., 738, 84, 10.1088/0004-637X/738/1/84 Heinz, 2000, Jet acceleration by tangled magnetic fields, Astrophys. J., 535, 104, 10.1086/308820 Higginson, 2017, Enhancement of quasistationary shocks and heating via temporal staging in a magnetized laser-plasma jet, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.255002 Higginson, 2017, Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Den. Phys., 23, 48, 10.1016/j.hedp.2017.02.003 Hillas, 1984, The origin of ultra-high-energy cosmic rays, ARAA, 22, 425, 10.1146/annurev.aa.22.090184.002233 Hsu, 2002, A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets, Mon. Not. R. Astron. Soc., 334, 257, 10.1046/j.1365-8711.2002.05422.x Hsu, 2003, Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun Spheromak formation, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.215002 Hsu, 2005, On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun, Phys. Plasmas, 12, 10.1063/1.1850921 Huarte-Espinosa, 2012, On the structure and stability of magnetic tower jets, Astrophys. J., 757, 66, 10.1088/0004-637X/757/1/66 Hubbard, 2006, Active galactic nuclei jet mass loading and truncation by stellar winds, Mon. Not. R. Astron. Soc., 371, 1717, 10.1111/j.1365-2966.2006.10808.x Hung, 2019, Experimental confirmation of the standard magnetorotational instability mechanism with a spring-mass analogue, Commun. Phys., 2, 7, 10.1038/s42005-018-0103-7 Huntington, 2015, Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows, Nat. Phys., 11, 173, 10.1038/nphys3178 Icke, 1992, Collimation of astrophysical jets by inertial confinement, Nature, 355, 524, 10.1038/355524a0 Imai, 2002, A collimated jet of molecular gas from a star on the asymptotic giant branch, Nature, 417, 829, 10.1038/nature00788 Ji, 2002, The α dynamo effects in laboratory plasmas, Magnetohydrodynamics, 38, 191, 10.22364/mhd.38.1-2.15 Jiménez-Rosales, 2018, The impact of faraday effects on polarized black hole images of Sagittarius A*, Mon. Not. R. Astron. Soc., 478, 1875, 10.1093/mnras/sty1210 Kargaltsev, 2003, The jets of the vela pulsar, Ast. Rev., 47, 487 Kasperczuk, 2006, Stable dense plasma jets produced at laser power densities around 1014 W/cm2, Phys. Plasmas, 13, 10.1063/1.2208087 Khiar, 2019, Laser-produced magnetic-Rayleigh–Taylor unstable plasma slabs in a 20 T magnetic field, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.205001 Konigl, 1989, Self-similar models of magnetized accretion disks, Astrophys. J., 342, 208, 10.1086/167585 Kylafis, 2015, Accretion and ejection in black-hole X-ray transients, Astron. Astrophys., 574, A133, 10.1051/0004-6361/201425106 Larosa, 1996, New promise for electron bulk energization in solar flares: Preferential Fermi acceleration of electrons over protons in reconnection-driven magnetohydrodynamic turbulence, Astrophys. J., 467, 454, 10.1086/177619 Lazarian, 2020, 3D turbulent reconnection: Theory, tests, and astrophysical implications, Phys. Plasmas, 27, 10.1063/1.5110603 Lazarian, 2012, Relation of astrophysical turbulence and magnetic reconnection, Phys. Plasmas, 19, 012105, 10.1063/1.3672516 Lazarian, 1999, Reconnection in a weakly stochastic field, Astrophys. J., 517, 700, 10.1086/307233 Lebedev, 2004, Jet deflection via crosswinds: Laboratory astrophysical studies, Astrophys. J., 616, 988, 10.1086/423730 Lebedev, 2002, Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets, Astrophys. J., 564, 113, 10.1086/324183 Lebedev, 2005, Magnetic tower outflows from a radial wire array Z-pinch, Mon. Not. R. Astron. Soc., 361, 97, 10.1111/j.1365-2966.2005.09132.x Lebedev, 2005, Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets, Plasma Phys. Control. Fusion, 47, B465, 10.1088/0741-3335/47/12B/S33 Lebedev, 2019, Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities, Rev. Modern Phys., 91, 10.1103/RevModPhys.91.025002 Lesur, 2010, On the angular momentum transport due to vertical convection in accretion discs, Mon. Not. R. Astron. Soc., 404, L64, 10.1111/j.1745-3933.2010.00836.x Li, 2006, Modeling the large-scale structures of astrophysical jets in the magnetically dominated limit, Astrophys. J., 643, 92, 10.1086/501499 Liang, 2013, Magnetic field generation and particle energization at relativistic shear boundaries in collisionless electron-positron plasmas, Astrophys. J. Lett., 766, L19, 10.1088/2041-8205/766/2/L19 Liska, 2020, Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field, Mon. Not. R. Astron. Soc., 494, 3656, 10.1093/mnras/staa955 Loureiro, 2013, Plasmoid and Kelvin–Helmholtz instabilities in sweet-parker current sheets, PRE, 87, 10.1103/PhysRevE.87.013102 Loureiro, 2016, Magnetic reconnection: from the sweet-parker model to stochastic plasmoid chains, Plasma Phys. Control. Fusion, 58, 10.1088/0741-3335/58/1/014021 Lu, 2019, Numerical simulation of magnetized jet creation using a hollow ring of laser beams, Phys. Plasmas, 26, 10.1063/1.5050924 Lubow, 1994, Magnetic field dragging in accretion discs, Mon. Not. R. Astron. Soc., 267, 235, 10.1093/mnras/267.2.235 Lynden-Bell, 1969, Galactic nuclei as collapsed old quasars, Nature, 223, 690, 10.1038/223690a0 Lynden-Bell, 2003, On why discs generate magnetic towers and collimate jets, Mon. Not. R. Astron. Soc., 341, 1360, 10.1046/j.1365-8711.2003.06506.x Lynden-Bell, 1994, Self-similar solutions up to flashpoint in highly wound magnetostatics, Mon. Not. R. Astron. Soc., 267, 146, 10.1093/mnras/267.1.146 Lyutikov, 2005, Polarization and structure of relativistic parsec-scale AGN jets, Mon. Not. R. Astron. Soc., 360, 869, 10.1111/j.1365-2966.2005.08954.x Marcowith, 2016, The microphysics of collisionless shock waves, Rep. Progr. Phys., 79, 10.1088/0034-4885/79/4/046901 Marinak, 1996, Three-dimensional simulations of Nova high growth factor capsule implosion experiments, Phys. Plasmas, 3, 2070, 10.1063/1.872004 Matt, 2006, Astrophysical explosions driven by a rotating, magnetized, gravitating sphere, Astrophys. J. Lett., 647, L45, 10.1086/507325 Matthews, 2020 McClintock, 2006, 157 Meier, 2001, Magnetohydrodynamic production of relativistic jets, Science, 291, 84, 10.1126/science.291.5501.84 Meisenheimer, 1986, Optical synchrotron emission in the southern lobe of 3C33, Nature, 319, 459, 10.1038/319459a0 Morris, 1987, Mechanisms for mass loss from cool stars, PASP, 99, 1115, 10.1086/132089 Nakamura, 2004, Poynting flux-dominated jets in decreasing-density atmospheres. I. The nonrelativistic current-driven kink instability and the formation of wiggled structures, Astrophys. J., 617, 123, 10.1086/425337 Narayan, 2000, Self-similar accretion flows with convection, Astrophys. J., 539, 798, 10.1086/309268 Nicolaï, 2008, Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix laser system facility, Phys. Plasmas, 15, 10.1063/1.2963083 Nilson, 2006, Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.255001 O’Donoghue, 1993, Flow dynamics and bending of wide-angle tailed radio sources, Astrophys. J., 408, 428, 10.1086/172600 Ortolani, 1993 Pariev, 2005, Limitations of the Hamiltonian treatment for collisionless astrophysical accretion flows, Baltic Astron., 14, 265 Pariev, 2007, A magnetic α-ω dynamo in AGN disks. I. The hydrodynamics of star-disk collisions and Keplerian flow, Astrophys. J., 658, 114, 10.1086/510734 Pariev, 2007, A magnetic α-ω dynamo in AGN disks. II. Magnetic field generation, theories, and simulations, Astrophys. J., 658, 129, 10.1086/510735 Park, 2010, Effect of plasma composition on the interpretation of Faraday rotation, Mon. Not. R. Astron. Soc., 403, 1993, 10.1111/j.1365-2966.2009.16228.x Park, 2010, Energy transfer and magnetic field generation via ion-beam driven instabilities in an electron-ion plasma, Phys. Plasmas, 17, 10.1063/1.3299325 Parks, 2017, Shocks in collisionless plasmas, Rev. Mod. Plasma Phys., 1, 1, 10.1007/s41614-017-0003-4 Pashchenko, 2019, Inferring the jet parameters of active galactic nuclei using Bayesian analysis of VLBI data with a non-uniform jet model, Mon. Not. R. Astron. Soc., 488, 939, 10.1093/mnras/stz1677 Pelletier, 1992, Hydromagnetic disk winds in Young stellar objects and active galactic nuclei, Astrophys. J., 394, 117, 10.1086/171565 Penna, 2013, General relativistic magnetohydrodynamic simulations of blandford-Znajek jets and the membrane paradigm, Mon. Not. R. Astron. Soc., 436, 3741, 10.1093/mnras/stt1860 Perucho, 2014, On the deceleration of Fanaroff-Riley class I jets: mass loading by stellar winds, Mon. Not. R. Astron. Soc., 441, 1488, 10.1093/mnras/stu676 Pipin, 2014, Magnetic helicity of the global field in solar cycles 23 and 24, Astrophys. J., 789, 21, 10.1088/0004-637X/789/1/21 Plouhinec, 2014, Interferometric characterization of laboratory plasma astrophysical jets produced by a 1- (mu ) s pulsed power driver, IEEE Trans. Plasma Sci., 42, 2666, 10.1109/TPS.2014.2323575 Price, 2003, A comparison of the acceleration mechanisms in young stellar objects and active galactic nuclei jets, Mon. Not. R. Astron. Soc., 339, 1223, 10.1046/j.1365-8711.2003.06278.x Pudritz, 1981, Dynamo action in turbulent accretion discs around black holes. I the fluctuations. II the mean magnetic field, Mon. Not. R. Astron. Soc., 195, 881, 10.1093/mnras/195.4.881 Pudritz, 2012, Magnetic fields in astrophysical jets: From launch to termination, SSR, 169, 27 Quataert, 1998, Particle heating by Alfvénic turbulence in hot accretion flows, Astrophys. J., 500, 978, 10.1086/305770 Quataert, 2000, Convection-dominated accretion flows, Astrophys. J., 539, 809, 10.1086/309267 Quataert, 1999, Spectral models of advection-dominated accretion flows with winds, Astrophys. J., 520, 298, 10.1086/307439 Rawes, 2018, Extreme jet bending on kiloparsec scales: the ‘doughnut’ in NGC 6109, Mon. Not. R. Astron. Soc., 480, 3644, 10.1093/mnras/sty2074 Rees, 1982, Ion-supported tori and the origin of radio jets, Nature, 295, 17, 10.1038/295017a0 Remillard, 2006, X-ray Properties of black-hole binaries, ARAA, 44, 49, 10.1146/annurev.astro.44.051905.092532 Remington, 2006, Experimental astrophysics with high power lasers and Z pinches, Rev. Modern Phys., 78, 755, 10.1103/RevModPhys.78.755 Reynolds, 1996, The matter content of the jet in M87: evidence for an electron-positron jet, Mon. Not. R. Astron. Soc., 283, 873, 10.1093/mnras/283.3.873 Rieger, 2019, An introduction to particle acceleration in shearing flows, Galaxies, 7, 78, 10.3390/galaxies7030078 Rincon, 2019, Dynamo theories, J. Plasma Phys., 85, 10.1017/S0022377819000539 Romero, 2017, Relativistic jets in active galactic nuclei and microquasars, SSR, 207, 5 Romero, 2020 Rosenberg, 2015, A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas, Nature Commun., 6, 6190, 10.1038/ncomms7190 Rosenberg, 2015, Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly driven laser-plasma experiments, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.205004 Rothstein, 2008, Advection of magnetic fields in accretion disks: Not so difficult after all, Astrophys. J., 677, 1221, 10.1086/529128 Rüdiger, 1993, Dynamo-driven accretion in galaxies, Astron. Astrophys., 270, 53 Ryutov, 2011, Using intense lasers to simulate aspects of accretion discs and outflows in astrophysics, Astrophys. Space Sci., 336, 21, 10.1007/s10509-010-0558-9 Ryutov, 1999, Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J., 518, 821, 10.1086/307293 Ryutov, 2000, Criteria for scaled laboratory simulations of astrophysical MHD phenomena, Astrophys. J. Suppl., 127, 465, 10.1086/313320 Sahai, 1998, Multipolar bubbles and jets in low-excitation planetary Nebulae: Toward a new understanding of the formation and shaping of planetary nebulae, Astron. J., 116, 1357, 10.1086/300504 Schartman, 2012, Stability of quasi-Keplerian shear flow in a laboratory experiment, Astron. Astrophys., 543, A94, 10.1051/0004-6361/201016252 Schekochihin, 2002, A model of nonlinear evolution and saturation of the turbulent MHD dynamo, New J. Phys., 4, 84, 10.1088/1367-2630/4/1/384 Selkowitz, 2004, Stochastic Fermi acceleration of subrelativistic electrons and its role in impulsive solar flares, Mon. Not. R. Astron. Soc., 354, 870, 10.1111/j.1365-2966.2004.08252.x Shakura, 1973, Black holes in binary systems. Observational appearance, Astron. Astrophys., 24, 337 Shapiro, 1976, A two-temperature accretion disk model for Cygnus X-1: structure and spectrum, Astrophys. J., 204, 187, 10.1086/154162 Sharma, 2007, Electron heating in hot accretion flows, Astrophys. J., 667, 714, 10.1086/520800 Shi, 2016, Saturation of the magnetorotational instability in the unstratified shearing box with zero net flux: convergence in taller boxes, Mon. Not. R. Astron. Soc., 456, 2273, 10.1093/mnras/stv2815 Shigemori, 2000, Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets, PRE, 62, 8838, 10.1103/PhysRevE.62.8838 Shukurov, 2006, Galactic dynamo and helicity losses through fountain flow, Astron. Astrophys., 448, L33, 10.1051/0004-6361:200600011 Simon, 2011, Resistivity-driven state changes in vertically stratified accretion disks, Astrophys. J., 730, 94, 10.1088/0004-637X/730/2/94 Singh, 2018, Bihelical spectrum of solar magnetic helicity and its evolution, Astrophys. J., 863, 182, 10.3847/1538-4357/aad0f2 Sironi, 2015, Electron heating by the ion cyclotron instability in collisionless accretion flows. II. Electron heating efficiency as a function of flow conditions, Astrophys. J., 800, 89, 10.1088/0004-637X/800/2/89 Sironi, 2016, Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go, Mon. Not. R. Astron. Soc., 462, 48, 10.1093/mnras/stw1620 Sironi, 2014, Relativistic reconnection: An efficient source of non-thermal particles, Astrophys. J. Lett., 783, L21, 10.1088/2041-8205/783/1/L21 Sisan, 2004, Experimental observation and characterization of the magnetorotational instability, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.114502 Sorathia, 2012, Global simulations of accretion disks. I. Convergence and comparisons with local models, Astrophys. J., 749, 189, 10.1088/0004-637X/749/2/189 Stanghellini, 2016, Compact galactic planetary nebulae: An HST/WFC3 morphological catalog, and a study of their role in the galaxy, Astrophys. J., 830, 33, 10.3847/0004-637X/830/1/33 Stefani, 2018 Stefani, 2009, Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping, PRE, 80, 10.1103/PhysRevE.80.066303 Stone, 1993, Numerical simulations of protostellar jets with nonequilibrium cooling. I. Method and two-dimensional results, Astrophys. J., 413, 198, 10.1086/172988 Strauss, 1985, The dynamo effect in fusion plasmas, Phys. Fluids, 28, 2786, 10.1063/1.865238 Suttle, 2020, Interactions of magnetized plasma flows in pulsed-power driven experiments, Plasma Phys. Control. Fusion, 62, 10.1088/1361-6587/ab5296 Suttle, 2018, Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows, Phys. Plasmas, 25, 10.1063/1.5023664 Suttle, 2016, Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.225001 Suzuki, 2014, Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields, Astrophys. J., 784, 121, 10.1088/0004-637X/784/2/121 Suzuki-Vidal, 2012, Interaction of a supersonic, radiatively cooled plasma jet with an ambient medium, Phys. Plasmas, 19, 10.1063/1.3685607 Suzuki-Vidal, 2010, Effect of wire diameter and addition of an axial magnetic field on the dynamics of radial wire array Z-pinches, IEEE Trans. Plasma Sci., 38, 581, 10.1109/TPS.2009.2036730 Suzuki-Vidal, 2009, Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory, Astrophys. Space Sci., 322, 19, 10.1007/s10509-009-9981-1 Suzuki-Vidal, 2015, Bow shock fragmentation driven by a thermal instability in laboratory astrophysics experiments, Astrophys. J., 815, 96, 10.1088/0004-637X/815/2/96 Suzuki-Vidal, 2013, Interaction of radiatively cooled plasma jets with neutral gases for laboratory astrophysics studies, High Energy Dens. Phys., 9, 141, 10.1016/j.hedp.2012.11.003 Suzuki-Vidal, 2013, Observation of energetic protons trapped in laboratory magnetic-tower jets, New J. Phys., 15, 10.1088/1367-2630/15/12/125008 Tchekhovskoy, 2016, Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff-Riley dichotomy, Mon. Not. R. Astron. Soc., 461, L46, 10.1093/mnrasl/slw064 Tikhonchuk, 2008, Laboratory modeling of supersonic radiative jets propagation in plasmas and their scaling to astrophysical conditions, Plasma Phys. Control. Fusion, 50, 10.1088/0741-3335/50/12/124056 Tobias, 2019 Treumann, 2009, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks, Astron. Astrophys. Rev., 17, 409, 10.1007/s00159-009-0024-2 Tzeferacos, 2018, Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma, Nature Commun., 9, 591, 10.1038/s41467-018-02953-2 Urry, 1995, Unified schemes for radio-loud active Galactic nuclei, PASP, 107, 803, 10.1086/133630 Uzdensky, 2006, Stellar explosions by magnetic towers, Astrophys. J., 647, 1192, 10.1086/505621 Uzdensky, 2007, Magnetically dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions, Phys. Plasmas, 14, 056506, 10.1063/1.2721969 Valenzuela, 2015, Counter-propagating plasma jet collision and shock formation on a compact current driver, High Energy Dens. Phys., 17, 140, 10.1016/j.hedp.2014.10.004 Velikhov, 1959, Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, Sov. J. Exper. Theor. Phys., 36, 1398 Vishniac, 2001, Magnetic helicity conservation and astrophysical dynamos, Astrophys. J., 550, 752, 10.1086/319817 Vlemmings, 2006, A magnetically collimated jet from an evolved star, Nature, 440, 58, 10.1038/nature04466 Wang, 2008, Spectropolarimetry of supernovae, ARAA, 46, 433, 10.1146/annurev.astro.46.060407.145139 Werner, 2017, Nonthermal particle acceleration in 3D relativistic magnetic reconnection in pair plasma, Astrophys. J. Lett., 843, L27, 10.3847/2041-8213/aa7892 Wheeler, 2002, Asymmetric supernovae from magnetocentrifugal jets, Astrophys. J., 568, 807, 10.1086/338953 Willingale, 2010, Proton deflectometry of a magnetic reconnection geometry, Phys. Plasmas, 17, 10.1063/1.3377787 Witt, 2009, The red rectangle: Its shaping mechanism and its source of ultraviolet photons, Astrophys. J., 693, 1946, 10.1088/0004-637X/693/2/1946 Woosley, 2006, The supernova Gamma-ray burst connection, Ann. Rev. Astron. Astrophys., 44, 507, 10.1146/annurev.astro.43.072103.150558 Workman, 2011, Simulations reveal fast mode shocks in magnetic reconnection outflows, Phys. Plasmas, 18, 10.1063/1.3631795 Yamada, 2010, Magnetic reconnection, Rev. Modern Phys., 82, 603, 10.1103/RevModPhys.82.603 Yamada, 2016, Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts, Phys. Plasmas, 23, 10.1063/1.4948721 Yang, 2012, The radio core and jet in the broad absorption-line quasar PG 1700+518, Mon. Not. R. Astron. Soc., 419, L74, 10.1111/j.1745-3933.2011.01182.x Yuan, 2014, Hot accretion flows around black holes, Ann. Rev. Astron. Astrophys., 52, 529, 10.1146/annurev-astro-082812-141003 Yurchak, 2014, Experimental demonstration of an inertial collimation mechanism in Nested outflows, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.155001 Zhdankin, 2019, Electron and ion energization in relativistic plasma turbulence, Astrophys. J., 122 Zhu, 2018, Global evolution of an accretion disk with a net vertical field: Coronal accretion, flux transport, and disk winds, Astrophys. J., 857, 34, 10.3847/1538-4357/aaafc9 Zou, 2020, Bipolar planetary nebulae from outflow collimation by common envelope evolution, Mon. Not. R. Astron. Soc., 497, 2855, 10.1093/mnras/staa2145 Zweibel, 2009, Magnetic reconnection in astrophysical and laboratory plasmas, Annu. Rev. Astron. Astrophys., 47, 291, 10.1146/annurev-astro-082708-101726