Persistence of charge density wave against variation of band structures in VxTi1−xSe2(x = 0−0.1)

Zhanfeng Liu1, Tongrui Li1, Wen Zhu1, Hongwei Shou2, Mukhtar Lawan Adam1, Qilong Cui1, Yuliang Li1, Sheng Wang1, Yunbo Wu1, Hongen Zhu1, Yi Liu1, Shuangming Chen1, Xiaojun Wu2, Shengtao Cui1, Song Li3,1,4, Zhe Sun5,1,6
1National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
2School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
3State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
4School Zhejiang Institute of Photonelectronics, Jinhua, China
5Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
6CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Di Salvo, F. J.; Waszczak, J. V. Transport properties and the phase transition in Ti1−xMxSe2 (M = Ta or V). Phys. Rev. B 1978, 17, 3801–3807.

Mottas, M. L.; Jaouen, T.; Hildebrand, B.; Rumo, M.; Vanini, F.; Razzoli, E.; Giannini, E.; Barreteau, C.; Bowler, D. R.; Monney, C. et al. Semimetal-to-semiconductor transition and charge-density-wave suppression in 1T-TiSe2−xSx single crystals. Phys. Rev. B 2019, 99, 155103.

Lee, K.; Choe, J.; Iaia, D.; Li, J. Q.; Zhao, J. J.; Shi, M.; Ma, J. Z.; Yao, M. Y.; Wang, Z. Y.; Huang, C. L. et al. Metal-to-insulator transition in Pt-doped TiSe2 driven by emergent network of narrow transport channels. npj Quantum Mater. 2021, 6, 8.

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

Liao, M. H.; Wang, H.; Zhu, Y. Y.; Shang, R. N.; Rafique, M.; Yang, L. X.; Zhang, H.; Zhang, D.; Xue, Q. K. Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor. Nat. Commun. 2021, 12, 5342.

Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

Mitsuishi, N.; Sugita, Y.; Bahramy, M. S.; Kamitani, M.; Sonobe, T.; Sakano, M.; Shimojima, T.; Takahashi, H.; Sakai, H.; Horiba, K. et al. Switching of band inversion and topological surface states by charge density wave. Nat. Commun. 2020, 11, 2466.

Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

Feng, J. J.; Susilo, R. A.; Lin, B. C.; Deng, W.; Wang, Y. J.; Li, B.; Jiang, K.; Chen, Z. Q.; Xing, X. Z.; Shi, Z. X. et al. Achieving room-temperature charge density wave in transition metal dichalcogenide 1T-VSe2. Adv. Electron. Mater. 2020, 6, 1901427.

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

Chen, P.; Chan, Y. H.; Wong, M. H.; Fang, X. Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 2016, 16, 6331–6336.

Ishiguro, Y.; Bogdanov, K.; Kodama, N.; Ogiba, M.; Ohno, T.; Baranov, A.; Takai, K. Layer number dependence of charge density wave phase transition between nearly-commensurate and incommensurate phases in 1T-TaS2. J. Phys. Chem. C 2020, 124, 27176–27184.

Kidd, T. E.; Miller, T.; Chou, M. Y.; Chiang, T. C. Electron–hole coupling and the charge density wave transition in TiSe2. Phys. Rev. Lett. 2002, 88, 226402.

Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the Electronic Structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

Kohn, W. Excitonic phases. Phys. Rev. Lett. 1967, 19, 439–442.

Watanabe, H.; Seki, K.; Yunoki, S. Charge-density wave induced by combined electron–electron and electron–phonon interactions in 1T-TiSe2: A variational Monte Carlo study. Phys. Rev. B 2015, 91, 205135.

Kogar, A.; Rak, M. S.; Vig, S.; Husain, A. A.; Flicker, F.; Joe, Y. I.; Venema, L.; MacDougall, G. J.; Chiang, T. C.; Fradkin, E. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 2017, 358, 1314–1317.

Chen, C.; Singh, B.; Lin, H.; Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T-TiSe2 exposes its excitonic character. Phys. Rev. Lett. 2018, 121, 226602.

Rossnagel, K.; Kipp, L.; Skibowski, M. Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism. Phys. Rev. B 2002, 65, 235101.

Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A. A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo-Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145.

Cercellier, H.; Monney, C.; Clerc, F.; Battaglia, C.; Despont, L.; Garnier, M. G.; Beck, H.; Aebi, P.; Patthey, L.; Berger, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys. Rev. Lett. 2007, 99, 146403.

Friend, R. H.; Parkin, S. S. P.; Jerome, D. The transport properties of vanadium-doped TiSe2 under pressure. J. Phys. C:Solid state Phys. 1982, 15, L871–L874.

Watson, M. D.; Rajan, A.; Antonelli, T.; Underwood, K.; Marković, I.; Mazzola, F.; Clark, O. J.; Siemann, G.-R.; Biswas, D.; Hunter, A.; Jandura, S.; Reichstetter, J.; McLaren, M.; Le Fèvre, P.; Vinai, G.; King, P. D. C. Strong-coupling charge density wave in monolayer TiSe2. 2D Materials 2020, 8, 015004.

Chuang, C. W.; Tanaka, Y.; Oura, M.; Rossnagel, K.; Chainani, A. Attractive Coulomb interaction, temperature-dependent hybridization, and natural circular dichroism in 1T-TiSe2. Phys. Rev. B 2020, 102, 195102.

Song, Z. P.; Huang, J. R.; Zhang, S.; Cao, Y.; Liu, C.; Zhang, R. Z.; Zheng, Q.; Cao, L.; Huang, L.; Wang, J. O. et al. Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett. 2022, 128, 026401.

Watson, M. D.; Beales, A. M.; King, P. D. C. On the origin of the anomalous peak in the resistivity of TiSe2. Phys. Rev. B 2019, 99, 195142.

Gao, Q.; Chan, Y. H.; Wang, Y. Z.; Zhang, H. T.; Pu, J. X.; Cui, S. T.; Yang, Y. C.; Liu, Z. T.; Shen, D. W.; Sun, Z. et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 2023, 14, 994.

Adam, M. L.; Zhu, H. E.; Liu, Z. F.; Cui, S. T.; Zhang, P. J.; Liu, Y.; Zhang, G. B.; Wu, X. J.; Sun, Z.; Song, L. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 2022, 15, 2643–2649.

Hughes, H. P. Structural distortion in TiSe2 and related materials—A possible Jahn-Teller effect. J. Phys. C Solid State Phys. 1977, 10, L319–L323.

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

Bianco, R.; Calandra, M.; Mauri, F. Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles. Phys. Rev. B 2015, 92, 094107.

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.