Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications
Tài liệu tham khảo
Höök, 2013, Energy Policy, 52, 797, 10.1016/j.enpol.2012.10.046
Bilgen, 2014, Sustain. Energy Rev., 38, 890, 10.1016/j.rser.2014.07.004
Humayun, 2021, J. Colloid Interface Sci., 599, 484, 10.1016/j.jcis.2021.04.049
Armaroli, 2007, Angew. Chem. Int. Ed., 46, 52, 10.1002/anie.200602373
Garba, 2021, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2020.104756
Varghese, 2020, Int. J. Greenh. Gas Control., 96, 10.1016/j.ijggc.2020.103005
Mustafa, 2020, J. Energy Chem., 49, 96, 10.1016/j.jechem.2020.01.023
Roy, 2010, ACS Nano, 4, 1259, 10.1021/nn9015423
Yoro, 2020, 3
Schneider, 2014, Chem. Rev., 114, 9919, 10.1021/cr5001892
Poizot, 2011, Energy Environ. Sci., 4, 2003, 10.1039/c0ee00731e
Din, 2021, J. CO2 Util., 43, 10.1016/j.jcou.2020.101361
Marschall, 2014, Adv. Funct. Mater., 24, 2421, 10.1002/adfm.201303214
Boyjoo, 2017, Chem. Eng. J., 310, 537, 10.1016/j.cej.2016.06.090
Humayun, 2016, Environ. Sci. Technol., 50, 13600, 10.1021/acs.est.6b04958
Tu, 2014, Adv. Mater., 26, 4607, 10.1002/adma.201400087
Cao, 2015, Adv. Mater., 27, 2150, 10.1002/adma.201500033
Paramasivam, 2012, Small, 8, 3073, 10.1002/smll.201200564
Xu, 2011, Nanoscale, 3, 5020, 10.1039/c1nr11033k
Bai, 2013, Langmuir, 29, 3097, 10.1021/la4001768
Jang, 2006, Adv. Mater., 18, 3309, 10.1002/adma.200601455
Wang, 2012, Adv. Mater., 24, 3421, 10.1002/adma.201201139
Wu, 2009, J. Phys. Chem. C, 113, 17893, 10.1021/jp9068762
Liu, 2014, ACS Appl. Mater. Interfaces, 6, 2407, 10.1021/am4047975
Liu, 2012, J. Mater. Chem., 22, 17759, 10.1039/c2jm33337f
Cao, 2012, ACS Appl. Mater. Interfaces, 4, 418, 10.1021/am201481b
Zhu, 2015, Angew. Chem. Int. Ed., 54, 9111, 10.1002/anie.201504135
Li, 2015, Adv. Funct. Mater., 25, 3074, 10.1002/adfm.201500521
Van, 2015, Nano Energy, 15, 625, 10.1016/j.nanoen.2015.05.024
Xie, 2015, ChemComm., 51, 2821
Zhang, 2018, Appl. Catal. B: Environ., 238, 586, 10.1016/j.apcatb.2018.07.050
Zhang, 2007, Mater. Chem. Phys., 103, 162, 10.1016/j.matchemphys.2007.02.008
Li, 2017, Appl. Catal. B: Environ., 203, 355, 10.1016/j.apcatb.2016.10.045
Kiss, 2017, Appl. Catal. B: Environ., 206, 547, 10.1016/j.apcatb.2017.01.066
da Silva, 2014, J. Phys. Chem. C, 118, 4930, 10.1021/jp408839q
Wu, 2017, J. Mater. Chem. A, 5, 23822, 10.1039/C7TA08061A
Taibl, 2016, Nanoscale, 8, 13954, 10.1039/C6NR00814C
Humayun, 2018, Nano Res., 11, 6391, 10.1007/s12274-018-2164-z
Kim, 2012, ACS Comb. Sci., 14, 179, 10.1021/co2001185
Shan, 2017, Appl. Catal. B: Environ., 219, 10, 10.1016/j.apcatb.2017.07.024
Wang, 2012, Energy Environ. Sci., 5, 6180, 10.1039/c2ee03158b
Amano, 2010, ChemComm., 46, 2769
Su, 2011, Nano Lett., 11, 203, 10.1021/nl1034573
Kim, 2010, Environ. Sci. Technol., 44, 6849, 10.1021/es101981r
Reyes-Gil, 2013, J. Phys. Chem. C, 117, 14947, 10.1021/jp4025624
Zhou, 2014, Small, 10, 674, 10.1002/smll.201301870
Cao, 2008, J. Phys. Chem. C, 112, 6253, 10.1021/jp8000465
Han, 2014, Adv. Funct. Mater., 24, 5719, 10.1002/adfm.201401279
Sakamoto, 2015, J. Am. Chem. Soc., 137, 9324, 10.1021/jacs.5b04062
Akimov, 2015, J. Am. Chem. Soc., 137, 11517, 10.1021/jacs.5b07454
Sato, 2010, Angew. Chem. Int. Ed., 49, 5101, 10.1002/anie.201000613
Allam, 2008, Chem. Mater., 20, 6477, 10.1021/cm801472y
Zhu, 2014, ACS Appl. Mater. Interfaces., 6, 671, 10.1021/am404774z
Feng, 2015, PCCP, 17, 26930, 10.1039/C5CP04389A
Choi, 2009, Science, 324, 63, 10.1126/science.1168636
Gao, 2007, Adv. Mater., 19, 2889, 10.1002/adma.200602377
Humayun, 2016, Appl. Catal. B: Environ., 180, 219, 10.1016/j.apcatb.2015.06.035
Xie, 2015, J. Alloy. Compd., 631, 120, 10.1016/j.jallcom.2015.01.091
Sun, 2013, J. Phys. Chem. C, 117, 9113, 10.1021/jp4004592
Ding, 2014, Environ. Sci. Technol., 48, 5823, 10.1021/es405714q
Zhang, 2012, J. Phys. Chem. C, 116, 25898, 10.1021/jp309719q
Zhang, 2011, ACS Catal., 1, 841, 10.1021/cs200155z
Huang, 2012, J. Am. Chem. Soc., 134, 1261, 10.1021/ja209662v
An, 2014, ChemSusChem, 7, 1086, 10.1002/cssc.201301194
Li, 2012, J. Am. Chem. Soc., 134, 7231, 10.1021/ja3010978
Xiong, 2016, ACS Catal., 6, 2462, 10.1021/acscatal.5b02922
Bai, 2013, J. Phys. Chem. C, 117, 9952, 10.1021/jp402062d
Fu, 2017, Small, 13, 1603938, 10.1002/smll.201603938
Wang, 2015, Appl. Catal. B: Environ., 176–177, 44, 10.1016/j.apcatb.2015.03.045
Xing, 2018, ACS Energy Lett., 3, 514, 10.1021/acsenergylett.7b01328
Meier, 2019, Chem. Eng., 7, 265
Geioushy, 2019, Mater. Res. Bull., 118, 10.1016/j.materresbull.2019.110499
Li, 2018, Appl. Surf. Sci., 452, 437, 10.1016/j.apsusc.2018.05.021
Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945
Zhang, 2018, ACS Appl. Mater. Interfaces, 10, 20458, 10.1021/acsami.8b04080
Dai, 2020, Chem. Eng. J., 389, 10.1016/j.cej.2019.123430
Zhang, 2019, Environ. Pollut., 253, 365, 10.1016/j.envpol.2019.06.089
Li, 2011, J. Am. Chem. Soc., 133, 10878, 10.1021/ja2025454
Low, 2015, J. Phys. Chem. Lett., 6, 4244, 10.1021/acs.jpclett.5b01610
Li, 2016, Small, 12, 6640, 10.1002/smll.201600382
Vairavapandian, 2008, Anal. Chim. Acta, 626, 119, 10.1016/j.aca.2008.07.052
Ge, 2019, Materials, 12, 1916, 10.3390/ma12121916
Li, 2017, Green Chem., 19, 882, 10.1039/C6GC02856J
Léonard, 2011, Chem. Soc. Rev., 40, 860, 10.1039/c0cs00024h
Khan, 2021, Energies, 14, 2267, 10.3390/en14082267
Helal, 2020, J. Ind. Eng. Chem., 89, 104, 10.1016/j.jiec.2020.05.016
Ibhadon, 2013, Catalysts, 3, 189, 10.3390/catal3010189
Li, 2014, Nanoscale, 6, 24, 10.1039/C3NR03998F
Yaseen, 2021, Energies, 14, 1278, 10.3390/en14051278
Zhu, 2017, Adv. Energy Mater., 7, 1700841, 10.1002/aenm.201700841
Christoforidis, 2019, ChemCatChem, 11, 368, 10.1002/cctc.201801198
Ashraf, 2020, Chem. Res. Toxicol., 33, 1292, 10.1021/acs.chemrestox.9b00308
Tijare, 2012, Int. J. Hydrog. Energy, 37, 10451, 10.1016/j.ijhydene.2012.01.120
Peng, 2016, Sci. Rep., 6, 19723, 10.1038/srep19723
Assirey, 2019, Saudi Pharm J., 27, 817, 10.1016/j.jsps.2019.05.003
Toan, 2003, Physica B Condens. Matter., 327, 279, 10.1016/S0921-4526(02)01764-7
Madhavan, 2015, Ionics, 21, 601, 10.1007/s11581-014-1340-8
Chen, 2020, J. Mater. Chem. A, 8, 2286, 10.1039/C9TA12799B
Zheng, 2000, Mater. Lett., 43, 19, 10.1016/S0167-577X(99)00223-2
Su, 2010, J. Nanopart. Res., 12, 967, 10.1007/s11051-009-9647-5
Yu, 2020, Energy Environ. Mater., 3, 121, 10.1002/eem2.12064
Wu, 2015, CrystEngComm, 17, 3859, 10.1039/C5CE00288E
Sasikala, 2017, J. Alloys Compd., 712, 870, 10.1016/j.jallcom.2017.04.133
Humayun, 2018, Appl. Catal. B: Environ., 231, 23, 10.1016/j.apcatb.2018.02.060
Li, 2016, PCCP, 18, 9176, 10.1039/C5CP06681F
Luan, 2014, Sci. Rep., 4, 6180, 10.1038/srep06180
Huang, 2017, Sci. Rep., 7, 7858, 10.1038/s41598-017-08439-3
Humayun, 2019, Environ. Sci. Pollut. Res., 26, 17696, 10.1007/s11356-019-05079-0
Sun, 2017, Environ. Sci. Nano, 4, 1147, 10.1039/C7EN00188F
Nosaka, 2017, Chem. Rev., 117, 11302, 10.1021/acs.chemrev.7b00161
Humayun, 2021, Chem. Rec., 1811, 10.1002/tcr.202100067
Raziq, 2020, Appl. Catal. B: Environ., 270
Albini, 2008, ChemSusChem, 1, 63, 10.1002/cssc.200700015
Bruner, 1911, Angew. Phys. Chem., 17, 354
Serpone, 2012, Photochem. Photobiol. Sci., 11, 1121, 10.1039/c2pp25026h
Braslavsky, 2011, Photochem. Photobiol. Sci., 10, 1515, 10.1039/c1pp05121k
Belver, 2019, Nanoscale Mater. Water. Purif. Elsevier., 581, 10.1016/B978-0-12-813926-4.00028-8
Hashimoto, 2005, Jpn. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269
Lindquist, 2014
Abbasi, 2000, Appl. Energy, 65, 121, 10.1016/S0306-2619(99)00077-X
Boddy, 1968, J. Electrochem. Soc., 115, 199, 10.1149/1.2411080
Kitano, 2008, Top. Catal., 49, 4, 10.1007/s11244-008-9059-2
Schrauzer, 1977, J. Am. Chem. Soc., 99, 7189, 10.1021/ja00464a015
Inoue, 1979, Nature, 277, 637, 10.1038/277637a0
Fresno, 2014, J. Mater. Chem. A, 2, 2863, 10.1039/C3TA13793G
Qu, 2018, Sustain. Energy Fuels, 2, 549, 10.1039/C7SE00610A
Ohtani, 2010, J. Photochem. Photobiol. C, 11, 157, 10.1016/j.jphotochemrev.2011.02.001
Yang, 2018, ACS Appl. Energy Mater., 1, 6657, 10.1021/acsaem.8b01345
Wang, 2006, C. R. Chim., 9, 761, 10.1016/j.crci.2005.02.053
Daghrir, 2013, Ind. Eng. Chem. Res., 52, 3581, 10.1021/ie303468t
Zhang, 2019, J. Mater. Chem. A, 7, 10879, 10.1039/C9TA02373A
Dalrymple, 2010, Appl. Catal. B: Environ., 98, 27, 10.1016/j.apcatb.2010.05.001
Wenderich, 2016, Chem. Rev., 116, 14587, 10.1021/acs.chemrev.6b00327
Usman, 2021, Energies, 14, 2281, 10.3390/en14082281
Wang, 2017, Adv. Sci., 4, 1600371, 10.1002/advs.201600371
Zada, 2016, Adv. Energy Mater., 6, 1601190, 10.1002/aenm.201601190
Neena, 2019, Appl. Surf. Sci., 488, 611, 10.1016/j.apsusc.2019.05.302
Neena, 2020, J. Photochem. Photobiol. A, 396
Raziq, 2015, Mater. Res. Bull., 70, 494, 10.1016/j.materresbull.2015.05.018
Raziq, 2016, J. Phys. Chem. C, 120, 98, 10.1021/acs.jpcc.5b10313
Kamat, 2007, J. Phys. Chem. C, 111, 2834, 10.1021/jp066952u
Windle, 2012, Coord. Chem. Rev., 256, 2562, 10.1016/j.ccr.2012.03.010
Kothe, 2014, Chem. Eur. J., 20, 11029, 10.1002/chem.201402585
Larkum, 2010, Curr. Opin. Biotechnol., 21, 271, 10.1016/j.copbio.2010.03.004
Barber, 2009, Chem. Soc. Rev., 38, 185, 10.1039/B802262N
Yang, 2014, Chem. Soc. Rev., 43, 8240, 10.1039/C4CS00213J
Xie, 2011, Energy Environ. Sci., 4, 4211, 10.1039/c1ee01594j
Raziq, 2018, Appl. Catal. B: Environ., 237, 1082, 10.1016/j.apcatb.2018.06.009
Low, 2017, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093
Fu, 2018, Adv. Energy Mater., 8, 1701503, 10.1002/aenm.201701503
Wu, 2017, Adv. Sci., 4, 1700194, 10.1002/advs.201700194
Raziq, 2018, Adv. Energy Mater., 8, 1701580, 10.1002/aenm.201701580
Liu, 2012, Sol. Energy Mater. Sol. Cells, 105, 53, 10.1016/j.solmat.2012.05.037
Li, 2014, Catal. Today, 224, 3, 10.1016/j.cattod.2013.12.006
Humayun, 2018, Appl. Catal. A, 568, 139, 10.1016/j.apcata.2018.10.007
Chen, 2017, Appl. Catal. B: Environ., 209, 320, 10.1016/j.apcatb.2017.03.003
Humayun, 2019, J. Hazard. Mater., 364, 635, 10.1016/j.jhazmat.2018.10.088
Ullah, 2018, Mater. Res. Exp., 5
Zhao, 2015, Materials, 8, 2043, 10.3390/ma8052043
Ma, 2018, Molecules, 23, 244, 10.3390/molecules23020244
Hernández-Alonso, 2009, Energy Environ. Sci., 2, 1231, 10.1039/b907933e
Ali, 2020, J. Hazard. Mater., 397
Maeda, 2007, J. Phys. Chem. C, 111, 7851, 10.1021/jp070911w
Mather, 2007, Adv. Funct. Mater., 17, 905, 10.1002/adfm.200600632
Mtougui, 2018, Superlattices Microstruct., 123, 111, 10.1016/j.spmi.2018.05.005
Katz, 2020, Helv. Chim. Acta, 103, 10.1002/hlca.202000061
Abbes, 2015, Results Phys., 5, 38, 10.1016/j.rinp.2014.10.004
Goel, 2021, Nano Energy, 80, 10.1016/j.nanoen.2020.105552
Gupta, 2016, Chem. Asian J., 11, 10, 10.1002/asia.201500640
Zhang, 2014, Inorg. Chem. Front., 1, 118, 10.1039/c3qi00058c
Si, 2015, Angew. Chem. Int. Ed., 54, 7954, 10.1002/anie.201502632
Zainullina, 2020, Prog. Solid. State Ch., 60, 10.1016/j.progsolidstchem.2020.100284
Bamzai, 2014, Integr. Ferroelectr., 158, 108, 10.1080/10584587.2014.957591
Yamaguchi, 1974, J. Phys. Chem. Solids, 35, 479, 10.1016/S0022-3697(74)80003-X
Yuan, 2011, J. Appl. Phys., 109, 07E141, 10.1063/1.3562259
White, 1982, Phys. Rev. B, 25, 1822, 10.1103/PhysRevB.25.1822
May, 2015, J. Phys. Chem. Lett., 6, 977, 10.1021/acs.jpclett.5b00169
Misch, 2014, Dalton Trans., 43, 2079, 10.1039/C3DT52404C
Dixon, 2015, J. Solid State Chem., 230, 337, 10.1016/j.jssc.2015.07.019
Shandilya, 2016, Adv. Appl. Ceram., 115, 354, 10.1080/17436753.2016.1157131
Thirumalairajan, 2012, Chem. Eng. J., 209, 420, 10.1016/j.cej.2012.08.012
Dhinesh Kumar, 2014, J. Mater. Sci.: Mater. Electron., 25, 3953
Phan, 2018, J. Environ. Chem. Eng., 6, 1209, 10.1016/j.jece.2018.01.033
Thirumalairajan, 2014, New J. Chem., 38, 5480, 10.1039/C4NJ01029A
Wang, 2018, Sens. Actuators. B Chem., 258, 1215, 10.1016/j.snb.2017.12.018
Demazeau, 2008, J. Mater. Sci., 43, 2104, 10.1007/s10853-007-2024-9
Kominami, 2002, J. Am. Ceram. Soc., 85, 2148, 10.1111/j.1151-2916.2002.tb00425.x
Esposito, 2019, Materials, 12, 668, 10.3390/ma12040668
Li, 2007, Mater. Res. Bull., 42, 203, 10.1016/j.materresbull.2006.06.010
Ismael, 2019, Catalysts, 9, 342, 10.3390/catal9040342
Azouzi, 2019, Mater. Sci. Semicond. Process., 104, 10.1016/j.mssp.2019.104682
Feng, 2020, Ecotoxicol. Environ. Saf., 198, 10.1016/j.ecoenv.2020.110661
Parida, 2010, Int. J. Hydrog. Energy., 35, 12161, 10.1016/j.ijhydene.2010.08.029
Rao, 2018, Chem. Eng. J., 352, 601, 10.1016/j.cej.2018.07.062
Bilecka, 2010, Nanoscale, 2, 1358, 10.1039/b9nr00377k
Farhadi, 2009, J. Alloy. Compd., 471, L5, 10.1016/j.jallcom.2008.03.113
Tang, 2013, Curr. Appl Phys., 13, 340, 10.1016/j.cap.2012.08.006
Kostyukhin, 2019, Ceram. Int., 45, 14384, 10.1016/j.ceramint.2019.04.155
Gaikwad, 2015, J. Solgel Sci Technol., 76, 27, 10.1007/s10971-015-3746-9
Jamali, 2017, Mater. Sci. Semicond. Process., 64, 47, 10.1016/j.mssp.2017.03.012
Xu, 2013, Chem. Soc. Rev., 42, 2555, 10.1039/C2CS35282F
Mehdizadeh, 2020, Ultrason. Sonochem., 61, 10.1016/j.ultsonch.2019.104848
Das, 2021, Mater. Sci. Eng. B, 271, 10.1016/j.mseb.2021.115295
Kanhere, 2014, Molecules, 19, 19995, 10.3390/molecules191219995
Li, 2020, ChemCatChem, 12, 623, 10.1002/cctc.201901294
Xu, 2019, Mater. Today Nano, 6
Nijboer, 1939, Proceed. Phys. Soc., 51, 575, 10.1088/0959-5309/51/4/303
Wilson, 1931, Proc. Math. Phys. Eng. Sci., 133, 458
Mönch, 2001
Hogarth, 1973, Phys. Technol., 4, 173, 10.1088/0305-4624/4/3/I02
Lany, 2015, J. Phys. Condens. Mater., 27, 10.1088/0953-8984/27/28/283203
Shockley, 1949, Bell Syst. Tech. J., 28, 435, 10.1002/j.1538-7305.1949.tb03645.x
Dupuis, 2008, J. Light. Technol., 26, 1154, 10.1109/JLT.2008.923628
Zhang, 2016, Front. Phys., 11
Maity, 2019, J. Electron. Mater., 48, 4856, 10.1007/s11664-019-07285-5
Dhiman, 2019, J. Rare Earths, 37, 1279, 10.1016/j.jre.2018.12.015
Jones, 2008, J. Phys. Chem. C, 112, 4455, 10.1021/jp710463x
Cheng, 2020, Chem. Eng. J., 384, 10.1016/j.cej.2019.123377
Zhong, 1997, Appl. Catal. A, 156, 29, 10.1016/S0926-860X(97)00003-3
Iervolino, 2017, Appl. Catal. B: Environ., 207, 182, 10.1016/j.apcatb.2017.02.008
Wang, 2019, Sci. Total Environ., 673, 565, 10.1016/j.scitotenv.2019.04.098
Phan, 2018, J. Ind. Eng. Chem., 61, 53, 10.1016/j.jiec.2017.11.046
Pan, 2020, J. Hazard. Mater., 389
Li, 2018, Nano Energy, 47, 199, 10.1016/j.nanoen.2018.02.051
Jin, 2021, Int. J. Hydrog. Energy, 46, 1634, 10.1016/j.ijhydene.2020.10.033
Gao, 2020, J. Catal., 384, 199, 10.1016/j.jcat.2020.02.024
Hou, 2006, J. Solgel Sci. Technol., 40, 9, 10.1007/s10971-006-8368-9
Li, 2010, Mater. Lett., 64, 223, 10.1016/j.matlet.2009.10.048
Garcia-Muñoz, 2020, Catal. Sci. Technol., 10, 1299, 10.1039/C9CY02269D
Garcia-Muñoz, 2019, Appl. Catal. B: Environ., 248, 120, 10.1016/j.apcatb.2019.02.030
Vijayaraghavan, 2020, J. Phys. Chem. Solids, 140, 10.1016/j.jpcs.2020.109377
Dong, 2009, J. Mater. Sci., 44, 2548, 10.1007/s10853-009-3332-z
Garcia-Muñoz, 2020, Appl. Catal. B: Environ., 262, 10.1016/j.apcatb.2019.118310
Ullah, 2018, Appl. Catal. B: Environ., 229, 24, 10.1016/j.apcatb.2018.02.001
Zheng, 2020, Mater. Today Phys., 15
Low, 2017, Small Methods, 1, 1700080, 10.1002/smtd.201700080
Ye, 2020, Environ. Technol., 41, 1486, 10.1080/09593330.2018.1538261
Ye, 2017, J. Solgel Sci. Technol., 82, 509, 10.1007/s10971-017-4332-0
Guan, 2021, Mater. Technol., 36, 603, 10.1080/10667857.2020.1782062
Hoseini, 2019, RSC Adv., 9, 24489, 10.1039/C9RA04265B
Acharya, 2020, ChemistrySelect., 5, 6153, 10.1002/slct.202000220
Wang, 2016, Materials, 9, 326, 10.3390/ma9050326
Soltanabadi, 2018, Sep. Purif. Technol., 202, 227, 10.1016/j.seppur.2018.03.019
Liu, 2020, ChemistrySelect., 5, 14792, 10.1002/slct.202004136
Sukumar, 2019, Mater. Sci. Semicond. Process., 100, 225, 10.1016/j.mssp.2019.04.049
Zhang, 2020, Nanotechnology, 31
Pirzada, 2019, ACS Omega, 4, 2618, 10.1021/acsomega.8b02829
Manchala, 2021, J. Colloid Interface Sci., 583, 255, 10.1016/j.jcis.2020.08.125
Jin, 2018, Mater. Res. Bull., 102, 353, 10.1016/j.materresbull.2018.02.057
Acharya, 2017, Inorg. Chem. Front., 4, 1022, 10.1039/C7QI00115K
Xu, 2020, Catalysts, 10, 301, 10.3390/catal10030301
Vijayaraghavan, 2021, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2020.104675
Acharya, 2017, Catal. Today, 353, 220, 10.1016/j.cattod.2017.01.001
Ren, 2016, Nanoscale, 8, 752, 10.1039/C5NR06338H
Sabeeh, 2018, Mater. Res. Exp., 5
Song, 2018, J. Phys. Chem. Solids, 121, 329, 10.1016/j.jpcs.2018.06.004
Xu, 2020, J. Alloys Compd., 815
Xu, 2017, RSC Adv., 7, 45369, 10.1039/C7RA08715B
Ismael, 2019, New J. Chem., 43, 13783, 10.1039/C9NJ03376A
Zhang, 2017, Appl. Catal. B: Environ., 204, 346, 10.1016/j.apcatb.2016.11.052
Gao, 2019, Nano, 14, 1950096, 10.1142/S1793292019500966
Garcia-Muñoz, 2020, J. Hazard. Mater., 400, 10.1016/j.jhazmat.2020.123099
Gong, 2019, New J. Chem., 43, 16506, 10.1039/C9NJ03908B
Dhinesh Kumar, 2017, J. Phys. Chem. Solids, 101, 25, 10.1016/j.jpcs.2016.10.005
Acharya, 2020, Int. J. Hydrog. Energy., 45, 11502, 10.1016/j.ijhydene.2020.01.158
Xu, 2017, New J. Chem., 41, 14602, 10.1039/C7NJ03120C
Wang, 2020, Appl. Surf. Sci., 504
Iervolino, 2018, Int. J. Hydrog. Energy., 43, 2184, 10.1016/j.ijhydene.2017.12.071
Guan, 2020, Opt. Mater., 100, 10.1016/j.optmat.2019.109644
Wu, 2018, J. Hazard. Mater., 347, 412, 10.1016/j.jhazmat.2018.01.025
Gao, 2019, Opt. Mater., 88, 229, 10.1016/j.optmat.2018.11.030
Lv, 2019, Mol. Catal., 475
Khan, 2020, Mater. Res. Bull., 127, 10.1016/j.materresbull.2020.110857
Gao, 2012, Appl. Surf. Sci., 258, 6460, 10.1016/j.apsusc.2012.03.061
Acharya, 2017, ChemistrySelect., 2, 10239, 10.1002/slct.201701589
Ye, 2018, Mater. Sci. Semicond. Process., 82, 14, 10.1016/j.mssp.2018.03.033
Luo, 2019, Sep. Purif. Technol., 210, 417, 10.1016/j.seppur.2018.08.028
Humayun, 2016, Nanomaterials, 6, 22, 10.3390/nano6010022
Jing, 2011, J. Phys. Chem. C, 115, 12375, 10.1021/jp203566v
Khan, 2019, Catal. Sci. Technol., 9, 3149, 10.1039/C9CY00127A
Xu, 2020, Appl. Surf. Sci., 511
Zhang, 2020, Mater. Lett., 262