Perovskite Materials for Light‐Emitting Diodes and Lasers

Advanced Materials - Tập 28 Số 32 - Trang 6804-6834 - 2016
Sjoerd A. Veldhuis1, Pablo P. Boix1, Natalia Yantara1, Mingjie Li2, Tze Chien Sum2, Nripan Mathews1,3, Subodh G. Mhaisalkar1,3
1Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Singapore
2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
3School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Tóm tắt

Organic–inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light‐emitting diodes, lasers, and light‐emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light‐emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A−1 have been achieved. Although perovskite light‐emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light‐emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower‐dimensionality layered and three‐dimensional perovskites, nanostructures, charge‐transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light‐emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light‐emitting devices.

Từ khóa


Tài liệu tham khảo

NREL 2016 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg accessed: April 2016.

10.1038/nmat3911

10.1038/nmat4271

10.1021/acs.jpclett.5b00732

10.1038/nnano.2014.149

10.1038/ncomms8383

10.1002/adma.201301603

10.1038/nphoton.2012.328

10.1126/science.1243982

10.1126/science.1243167

10.1021/jz500279b

10.1063/1.4828566

10.1109/JDT.2013.2250252

Shukla M., 2011, Indian J. Pure Appl. Phys., 49, 142

10.1021/nl5048779

10.1021/acs.nanolett.5b02985

10.1021/jacs.5b03796

10.1021/ja411045r

10.1021/ja507086b

10.1021/acs.jpclett.5b00968

10.1007/BF01507527

10.1107/S0108768108032734

10.1038/nphoton.2014.134

10.1039/b007070j

10.1039/C4SC02211D

10.1063/1.112265

10.1016/0038-1098(92)90210-Z

10.1016/0009-2614(96)00310-7

10.1016/S0038-1098(97)10085-0

10.1021/cm990561t

10.1021/jz5005285

10.1021/acs.jpclett.5b02011

10.1002/adma.201503461

10.1021/ja4109209

10.1021/jacs.5b05404

10.1021/nl503057g

10.1038/nature12340

10.1021/acs.nanolett.5b00235

10.1002/adma.201502490

10.1126/science.aad1818

10.1002/aenm.201502104

10.1039/c3ee43822h

10.1021/ic401215x

10.1126/science.aad5845

10.1021/cg400645t

10.1016/j.cap.2005.08.001

10.1039/c001929a

10.1126/science.aac7660

10.1364/OE.18.005912

10.1021/acs.jpcc.5b06211

10.1002/ange.201406466

10.1021/ic991048k

10.1038/ncomms8026

10.1103/PhysRevB.42.11099

10.1016/j.jpcs.2011.08.029

10.1016/0379-6779(94)03017-Z

10.1021/acs.jpclett.5b00664

10.1038/369467a0

10.1021/ja00006a076

10.1021/ja512833n

10.1002/adma.201506141

10.1016/j.actamat.2009.03.037

10.1039/C0JM02121K

10.1021/cm8020462

10.1246/cl.1997.1235

10.1038/ncomms8586

10.1039/C4TA05878J

10.1002/advs.201500194

10.1021/acsnano.5b01154

10.1021/acs.nanolett.5b02082

10.1021/acs.nanolett.5b01166

10.1038/35003535

10.1021/acs.chemmater.5b03769

10.1021/acs.nanolett.5b02369

10.1021/jacs.5b05602

10.1021/acs.nanolett.5b02404

10.1002/anie.201508276

10.1038/nature04165

10.1021/acs.jpcc.5b08537

10.1021/ja0725089

10.1039/C4CC04973J

10.1039/C5NR06890H

10.1021/ja5006288

10.1038/nature14563

10.1126/sciadv.1501104

10.1021/jacs.5b08520

10.1002/adma.201503954

10.1002/cphc.201402428

10.1021/jacs.5b11199

10.1039/C5CC06750B

10.1039/C4NR06982J

10.1023/A:1016584519829

10.1021/acs.nanolett.5b01430

10.1021/acs.chemmater.5b00281

10.1039/C5CC09762B

10.1021/nn2001454

10.1126/science.1103755

10.1039/C4CC07518H

10.1002/adma.201500465

10.1002/adma.201405217

10.1002/adma.201405044

10.1002/adma.201403751

10.1021/acs.nanolett.5b04959

10.1039/C5NR05604G

10.1021/acsnano.5b07506

10.1021/acsami.5b10373

10.1038/ncomms8497

10.1002/anie.201500014

10.1002/adfm.201502962

10.1038/ncomms4586

10.1038/nphoton.2014.171

10.1126/science.aaa5760

10.1126/science.aaa2725

10.1038/nnano.2015.90

10.1002/adma.201305172

10.1039/C5EE01265A

10.1002/adfm.201002587

10.1021/acs.jpcc.5b02959

10.1038/ncomms6049

10.1021/acs.nanolett.5b00678

10.1002/adma.201502608

10.1002/adma.201500449

10.1126/science.1060367

10.1038/nmat4271

10.1038/nature05839

10.1126/science.290.5490.314

10.1002/adma.201503573

10.1021/acs.jpclett.5b02460

10.1038/ncomms9056

10.1088/0957-4484/26/34/342001

10.1021/jz500858a

10.1038/nature13829

10.1002/adma.201502567

10.1021/acsami.5b09084

10.1021/acs.jpclett.5b02390

10.1126/science.aaa0472

10.1021/jz5017069

10.1002/adma.201401991

10.1002/adma.201501978

10.1002/adom.201500229

10.1103/PhysRevB.87.115309

10.1021/jz500332z

10.1063/1.2966369

10.1063/1.2971206

10.1103/PhysRevB.84.195449

10.1002/adma.200802436

10.1103/PhysRevLett.100.066601

10.1063/1.3527936

10.1021/acsphotonics.5b00018

10.1021/nn504856g

10.1063/1.4898703

10.1073/pnas.1600789113