Permutation polynomials EA-equivalent to the inverse function over GF (2 n )

Cryptography and Communications - Tập 3 Số 3 - Trang 175-186 - 2011
Yongqiang Li1,2, Mingsheng Wang2
1Graduate School of Chinese Academy of Sciences, Beijing, China
2The State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berger, T.P., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over $\mathbb{F}_{2^n}$ . IEEE Trans. Inf. Theory 52(9), 4160–4170 (2006)

Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Advances in Cryptology - EUROCRYPT’93. LNCS, vol. 765, pp. 65–76. Springer, New York (1994)

Biham, E., Shamir, A.: Defferential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations sutiable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)

Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Advances in Cryptology -EUROCRYPT’94. LNCS, vol. 950, pp. 356–365. Springer, New York (1995)

Charpin, P., Helleseth, T., Zinoviev, V.: Propagation characteristics of x  − 1→x and Kloosterman sums. Finite Fields Appl. 13, 366–381 (2007)

Charpin, P, Gong, G.: Hyperbent functions, Kloosterman sums, and Dickson polynomials. IEEE Trans. Inf. Theory 54(9), 4230–4238 (2008)

Dillon, J.F.: APN polynomials: an update. In: Proceedings of the 9th Conference on Finite Fields and Applications FQ9. Dublin, Ireland (2009, to be published)

Dillon, J.F.: Elementary Hadamard Difference Sets. Ph.D. dissertation, University of Maryland (1974)

Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006)

Helleseth, T., Zinoviev, V.: On Z 4-linear goethals codes and Kloosterman sums. Des. Codes Cryptogr. 17, 269–288 (1999)

Hou, X.D.: Affinity of permutations of $\mathbb{F}_{2}^{n}$ . Discrete Appl. Math. 154(2), 313–325 (2006)

Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36(3), 686–692 (1990)

Li, Y., Wang, M.: On EA-equivalence of certain permutations to power mappings. Des. Codes Cryptogr. 58(3), 259–269 (2011)

Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applications 20, vol. 20. Addison-Wesley, Massachusetts (1983)

Lisoněk, P.: On the Connection between Kloosterman Sums and Elliptic Curves. SETA 2008, LNCS 5203, pp. 182–187 (2008)

Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography-EUROCRYPT’93. LNCS, vol. 765, pp. 55–64. Springer, New York (1994)

Pasalic, E.: On cryptographically significant mappings over GF(2 n ). In: WAIFI 2008. LNCS, vol. 5130, pp. 189–204 (2008)

Pasalic, E., Charpin, P.: Some results concerning cryptographically significant mappings over GF(2 n ). Des. Codes Cryptogr. 57(3), 257–269 (2010)