Permeability study of cancellous bone and its idealised structures

Medical Engineering & Physics - Tập 37 - Trang 77-86 - 2015
Ardiyansyah Syahrom1, Mohammed Rafiq Abdul Kadir2, Muhamad Nor Harun1, Andreas Öchsner3
1Sport Innovation and Technology Center (SITC), Universiti Teknologi MalaysiaJ, Johor, Malaysia
2Medical Device Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, Johor, Malaysia
3Griffith School of Engineering, Griffith University, Australia

Tài liệu tham khảo

Cole, 2010, Biomechanics of bone, 157 Rincón-Kohli, 2009, Multi-axial mechanical properties of human trabecular bone, Biomech Model Mechanobiol, 8, 195, 10.1007/s10237-008-0128-z Morita, 1994, Progression of osteoporosis in cancellous bone depending on trabecular structure, Ann Biomed Eng, 22, 532, 10.1007/BF02367089 Perilli, 2007, Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age, Bone, 41, 760, 10.1016/j.bone.2007.07.014 Nauman, 1999, Dependence of intertrabecular permeability on flow direction and anatomic site, Ann Biomed Eng, 27, 517, 10.1114/1.195 Accadbled, 2008, A measurement technique to evaluate the macroscopic permeability of the vertebral end-plate, Med Eng Phys, 30, 116, 10.1016/j.medengphy.2006.12.008 Mulvihill, 2010, Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis, Clin Biomech, 25, 491, 10.1016/j.clinbiomech.2010.01.006 Samuel, 2004 Vaccaro, 2002, Bone grafting alternatives in spinal surgery, Spine J, 2, 206, 10.1016/S1529-9430(02)00180-8 Kaneko, 2004, Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases, J Biomech, 37, 523, 10.1016/j.jbiomech.2003.08.010 Majumdar, 1998, High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties, Bone, 22, 445, 10.1016/S8756-3282(98)00030-1 Shim, 2005, Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine, Int J Impact Eng, 32, 525, 10.1016/j.ijimpeng.2005.03.006 Perilli, 2008, Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur, J Biomech, 41, 438, 10.1016/j.jbiomech.2007.08.003 Chen, 2008, Regional variations of vertebral trabecular bone microstructure with age and gender, Osteoporos Int, 19, 1473, 10.1007/s00198-008-0593-3 Nazarian, 2006, The interaction of microstructure and volume fraction in predicting failure in cancellous bone, Bone, 39, 1196, 10.1016/j.bone.2006.06.013 Bevill, 2006, Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone, Bone, 39, 1218, 10.1016/j.bone.2006.06.016 Bevill, 2009, Heterogeneity of yield strain in low-density versus high-density human trabecular bone, J Biomech, 42, 2165, 10.1016/j.jbiomech.2009.05.023 Morgan, 2003, Trabecular bone modulus–density relationships depend on anatomic site, J Biomech, 36, 897, 10.1016/S0021-9290(03)00071-X McCalden, 1997, Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture, J Bone Joint Surg Am, 79, 421, 10.2106/00004623-199703000-00016 Pressel, 2005, Mechanical properties of femoral trabecular bone in dogs, BioMed Eng Online, 4, 17, 10.1186/1475-925X-4-17 Teo, 2007, Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties, Mater Sci Eng C, 27, 333, 10.1016/j.msec.2006.05.003 Ford, 1996, The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation, J Biomech, 29, 1309, 10.1016/0021-9290(96)00062-0 Kang, 1998, Mechanical properties and bone densities of canine trabecular bone, J Mater Sci Mater Med, 9, 263, 10.1023/A:1008852610820 Ciarelli, 1991, Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography, J Orthop Res, 9, 674, 10.1002/jor.1100090507 Yerby, 1998, The effect of boundary conditions on experimentally measured trabecular strain in the thoracic spine, J Biomech, 31, 891, 10.1016/S0021-9290(98)00064-5 Schoenfeld, 1974, Mechanical properties of human cancellous bone in the femoral head, Med Biol Eng Comput, 12, 313, 10.1007/BF02477797 Badiei, 2007, Influence of orthogonal overload on human vertebral trabecular bone mechanical properties, J Bone Miner Res, 22, 1690, 10.1359/jbmr.070706 Homminga, 2002, Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level, Bone, 30, 759, 10.1016/S8756-3282(02)00693-2 Krischak, 1999, Predictive value of bone mineral density and Singh Index for the in vitro mechanical properties of cancellous bone in the femoral head, Clin Biomech, 14, 346, 10.1016/S0268-0033(98)90095-X Mitton, 1998, Mechanical properties of ewe vertebral cancellous bone compared with histomorphometry and high-resolution computed tomography parameters, Bone, 22, 651, 10.1016/S8756-3282(98)00036-2 Baroud, 2003, How to determine the permeability for cement infiltration of osteoporotic cancellous bone, Med Eng Phys, 25, 283, 10.1016/S1350-4533(02)00223-0 Baroud, 2004, Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration, J Biomech, 37, 189, 10.1016/S0021-9290(03)00246-X Kohles, 2001, Direct perfusion measurements of cancellous bone anisotropic permeability, J Biomech, 34, 1197, 10.1016/S0021-9290(01)00082-3 Grimm, 1997, Measurements of permeability in human calcaneal trabecular bone, J Biomech, 30, 743, 10.1016/S0021-9290(97)00016-X Ochia, 2002, Hydraulic resistance and permeability in human lumbar vertebral bodies, J Biomech Eng, 124, 533, 10.1115/1.1503793 Kameo, 2010, Estimation of bone permeability considering the morphology of lacuno-canalicular porosity, J Mech Behav Biomed Mater, 3, 240, 10.1016/j.jmbbm.2009.10.005 Ochoa, 1997, In vivo observations of hydraulic stiffening in the canine femoral head, J Biomech Eng, 119, 103, 10.1115/1.2796051 Downey, 1988, The effect of compressive loading on intraosseous pressure in the femoral head in vitro, J Bone Joint Surg Am, 70, 871, 10.2106/00004623-198870060-00012 Odgaard, 1997, Three-dimensional methods for quantification of cancellous bone architecture, Bone, 20, 315, 10.1016/S8756-3282(97)00007-0 Kadir, 2010, Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone, Med Biol Eng Comput, 48, 497, 10.1007/s11517-010-0593-2 Abdul Kadir, 2007, Microstructural damage of cancellous bone under uniaxial compression, 32 Abdul Kadir, 2008, Micro-modelling and analysis of actual and idealised cancellous structure, 32 Ulrich, 1999, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone, Bone, 25, 55, 10.1016/S8756-3282(99)00098-8 Reyes, 1999, Power law for the permeability in a two-dimensional disordered porous medium, Phys A: Stat Mech Appl, 274, 391, 10.1016/S0378-4371(99)00385-4 Vossenberg, 2009, Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering, Biomech Model Mechanobiol, 8, 499, 10.1007/s10237-009-0153-6 Xu, 2008, Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials, Chem Eng J, 140, 562, 10.1016/j.cej.2007.12.010 Singh, 2009, Characterization of the structure and permeability of titanium foams for spinal fusion devices, Acta Biomater, 5, 477, 10.1016/j.actbio.2008.06.014 Bhattacharya, 2002, Thermophysical properties of high porosity metal foams, Int J Heat Mass Transf, 45, 1017, 10.1016/S0017-9310(01)00220-4 Innocentini, 2009, Permeability of porous gelcast scaffolds for bone tissue engineering, J Porous Mater Despois, 2005, Permeability of open-pore microcellular materials, Acta Mater, 53, 1381, 10.1016/j.actamat.2004.11.031 Moreira, 2004, Permeability of ceramic foams to compressible and incompressible flow, J Eur Ceram Soc, 24, 3209, 10.1016/j.jeurceramsoc.2003.11.014 Moreira, 2004, The influence of structural parameters on the permeability of ceramic foams, Braz J Chem Eng, 21, 23, 10.1590/S0104-66322004000100004 Azzam, 1976, Calculation of the permeability of porous media from the Navier–Stokes equation, Ind Eng Chem Fundam, 15, 281, 10.1021/i160060a010 Hui, 1996, Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing, J Biomech, 29, 123, 10.1016/0021-9290(95)00010-0 Shin, 2006, Bone temperature estimation during orthopaedic round bur milling operations, J Biomech, 39, 33, 10.1016/j.jbiomech.2004.11.004 Rapillard, 2006, Compressive fatigue behavior of human vertebral trabecular bone, J Biomech, 39, 2133, 10.1016/j.jbiomech.2005.04.033 van Lenthe, 2006, Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties, Bone, 39, 1182, 10.1016/j.bone.2006.06.033 Burgers, 2008, Compressive properties of trabecular bone in the distal femur, J Biomech, 41, 1077, 10.1016/j.jbiomech.2007.11.018 Roberts, 2000, Correlation of anisotropic elastic and transport properties of cancellous bone, 11 Reynaud, 2006, Anisotropic hydraulic permeability in compressed articular cartilage, J Biomech, 39, 131, 10.1016/j.jbiomech.2004.10.015 Costantino, 1994, Synthetic bone graft substitutes, Otolaryngol Clin N Am, 27, 1037, 10.1016/S0030-6665(20)30622-8 Sanz-Herrera, 2009, On scaffold designing for bone regeneration: a computational multiscale approach, Acta Biomater, 5, 219, 10.1016/j.actbio.2008.06.021 Ochoa, 2009, Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering, J Biomech, 42, 257, 10.1016/j.jbiomech.2008.10.030 Sanz-Herrera, 2008, Mechanical and flow characterization of Sponceram® carriers: evaluation by homogenization theory and experimental validation, J Biomed Mater Res B: Appl Biomater, 87B, 42, 10.1002/jbm.b.31065 Innocentini, 2010, Influence of sample thickness and measurement set-up on the experimental evaluation of permeability of metallic foams, J Porous Mater, 17, 491, 10.1007/s10934-009-9312-5 Beaudoin, 1991, Finite element modelling of polymethylmethacrylate flow through cancellous bone, J Biomech, 24, 127, 10.1016/0021-9290(91)90357-S Pearce, 2007, Animal models for implant biomaterial research in bone: a review, Eur Cell Mater, 13, 1, 10.22203/eCM.v013a01