Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems

Inventiones mathematicae - Tập 81 Số 1 - Trang 155-188 - 1985
Ivar Ekeland1,2, Helmut Hofer1,2
1CEREMADE, Université Paris, Paris Cedex 16
2School of Mathematics, University of Bath, Bath, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Sc. Norm. Super. Pisa7, 539?603 (1980)

Amann, H., Zehnder, E.: Periodic solutions of asymptotically linear Hamiltonian equations. Manuscr. Math.32, 149?189 (1980)

Ambrosetti, A., Mancini, G.: Solutions of minimal period for a class of convex Hamiltonian systems. Math. Ann.255, 405?421 (1981)

Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal.14, 349?381 (1973)

Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. New York: Wiley 1984

Cambini, A.: Sul lemma di Morse. Boll. Unione Met. Ital.7, 87?93 (1973)

Clarke, F.: Solutions périodiques des équations hamiltoniennes. C.R. Acad. Sci., Paris287, 951?952 (1978)

Clarke, F.: Periodic solutions of Hamiltonian inclusions. J. Differ. Equations40, 1?6 (1981)

Clarke, F.: Periodic solutions of Hamiltonian's equations and local minima of the dual action (To appear)

Clarke, F., Ekeland, I.: Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math.33, 103?116 (1980)

Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math. (To appear)

Ekeland I.: Nonconvex minimization problems. Bull. Am. Math. Soc.1, New Series 443?474 (1979)

Ekeland, I.: Une théorie de Morse pour les systèmes hamiltoniens convexes. Ann. Inst. Henri Poincaré: Analyse non linéaire.1, 19?78 (1984)

Ekeland, I.: Periodic solutions to Hamiltonian equations and a theorem of P. Rabinowitz. Differ. Equations34, 523?534 (1979)

Ekeland, I.: An index theory for periodic solutions of convex Hamiltonian systems. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkeley, 1983, (To appear)

Ekeland, I.: Hypersurfaces pincées et systèmes hamiltoniens. Note C.R. Acad. Sci. Paris (à paraître 1984)

Ekeland, I., Teman, R.: Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, 1974; English translation, ?Convex analysis and variational problems?. North-Holland-Elsevier, 1976

Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology8, 361?369 (1969)

Girardi, M., Matzeu, M.: Some results on solutions of minimal period to superquadratic Hamiltonian equations. Nonlinear Anal., Theory Methods Appl.7, 475?482 (1983)

van Groesen, E.: Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian systems. J. Differ. Equations (To appear)

Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain pass theorem. J. Lond. Math. Soc. (To appear)

Hofer, H.: The topological degree at a critical point of mountain pass type. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkely, 1983) (To appear)

Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. English translation, Pergamon press, 1963

Palais, R.: Ljusternik-Schnirelman theory on Banach manifolds. Topology5, 115?132 (1966)

Rabinowitz, P.: Periodic solutions of Hamiltonian systems Comm. Pure Appl. Math.31, 157?184 (1978)

Rockafellar, R.T.: Convex analysis. Princeton: University Press (1970)

Takens, F.: A note on sufficiency of jets. Invent. Math. 225?231 (1971)

Yakubovich, V., Starzhinskii, V.: Linear differential equations with periodic coefficients. New York: Halsted Press, Wiley