Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Sc. Norm. Super. Pisa7, 539?603 (1980)
Amann, H., Zehnder, E.: Periodic solutions of asymptotically linear Hamiltonian equations. Manuscr. Math.32, 149?189 (1980)
Ambrosetti, A., Mancini, G.: Solutions of minimal period for a class of convex Hamiltonian systems. Math. Ann.255, 405?421 (1981)
Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal.14, 349?381 (1973)
Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. New York: Wiley 1984
Cambini, A.: Sul lemma di Morse. Boll. Unione Met. Ital.7, 87?93 (1973)
Clarke, F.: Solutions périodiques des équations hamiltoniennes. C.R. Acad. Sci., Paris287, 951?952 (1978)
Clarke, F.: Periodic solutions of Hamiltonian's equations and local minima of the dual action (To appear)
Clarke, F., Ekeland, I.: Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math.33, 103?116 (1980)
Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math. (To appear)
Ekeland, I.: Une théorie de Morse pour les systèmes hamiltoniens convexes. Ann. Inst. Henri Poincaré: Analyse non linéaire.1, 19?78 (1984)
Ekeland, I.: Periodic solutions to Hamiltonian equations and a theorem of P. Rabinowitz. Differ. Equations34, 523?534 (1979)
Ekeland, I.: An index theory for periodic solutions of convex Hamiltonian systems. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkeley, 1983, (To appear)
Ekeland, I.: Hypersurfaces pincées et systèmes hamiltoniens. Note C.R. Acad. Sci. Paris (à paraître 1984)
Ekeland, I., Teman, R.: Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, 1974; English translation, ?Convex analysis and variational problems?. North-Holland-Elsevier, 1976
Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology8, 361?369 (1969)
Girardi, M., Matzeu, M.: Some results on solutions of minimal period to superquadratic Hamiltonian equations. Nonlinear Anal., Theory Methods Appl.7, 475?482 (1983)
van Groesen, E.: Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian systems. J. Differ. Equations (To appear)
Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain pass theorem. J. Lond. Math. Soc. (To appear)
Hofer, H.: The topological degree at a critical point of mountain pass type. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkely, 1983) (To appear)
Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. English translation, Pergamon press, 1963
Yakubovich, V., Starzhinskii, V.: Linear differential equations with periodic coefficients. New York: Halsted Press, Wiley