Periodic solution to p-Laplacian neutral Liénard type equation with variable parameter

Mathematica Slovaca - Tập 63 - Trang 381-395 - 2013
Bo Du1,2
1Department of Mathematics, Nanjing Normal University, Nanjing, P. R. China
2Department of Mathematics, Huaiyin Normal University Jiangsu, Huaian, P. R. China

Tóm tắt

Using Mawhin’s continuation theorem we obtain some existence results of periodic solutions for a type of p-Laplacian neutral Liénard equation $$\left( {\phi _p \left( {\left( {x\left( t \right) - c\left( t \right)x\left( {t - \tau } \right)} \right)^\prime } \right)} \right)^\prime + f\left( {x\left( t \right)} \right)x'\left( t \right) + g\left( {x\left( {t - \gamma \left( t \right)} \right)} \right) = e\left( t \right).$$ It is worth noting that c(t) is no longer a constant which is different from the corresponding ones of past work.

Tài liệu tham khảo

LU, S.— REN, J.— GE, W.: Problems of periodic solutions for a kind of second order neutral functional differential equation, Appl. Anal. 82 (2003), 411–426. ZHU, Y.— LU, S.: Periodic solutions for p-Laplacian neutral functional differential equation with multiple deviating arguments, J. Math. Anal. Appl. 336 (2007), 1357–1367. DU, B.— GUO, L.— GE, W.— LU, S.: Periodic solutions for generalized Liénard neutral equation with variable parameter, Nonlinear Anal. 70 (2009), 2387–2394. GAINES, R.— MAWHIN, J.: Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977.