Periodic Solutions of a Nonautonomous Leslie-Gower Predator-Prey Model with Non-Linear Type Prey Harvesting on Time Scales

Differential Equations and Dynamical Systems - Tập 27 - Trang 357-367 - 2015
Sultan Alam1, Syed Abbas1, Juan J. Nieto2,3
1School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
2Department of Mathematical Analysis, University of Santiago de Compostela, Santiago de Compostela, Spain
3Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Tóm tắt

In this paper, we investigate the existence of periodic solutions of modified version of the Leslie-Gower predator-prey model with Holling-type II functional response in the presence of Michaelis-Menten type prey harvesting over a time scale. Sufficient conditions for the existence of periodic solutions are derived by using the continuation theorem of coincidence degree theory. The condition we obtain is easily verifiable and not much restricted.

Tài liệu tham khảo

Abbas, S., Banerjee, M., Hungerbuhler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367, 249–259 (2010) Fu, S., Zhang, L., Hu, P.: Global behavior of solutions in a Lotka Volterra predator prey model with prey-stage structure. Nonlinear Anal. RWA. 14, 2027–2045 (2013) Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015) Yang, W., Li, X., Bai, Z.: Permanence of periodic Holling type-IV predator-prey system with stage structure for prey. Math. Comp. Model. 48, 677–684 (2008) Huo, H.F., Li, W.T.: Periodic solutions of delayed Leslie-Gower predator-prey models. Appl. Math. Comput. 155, 591–605 (2004) Mickens, R.E.: A SIR-model with square-root dynamics: an NSFD scheme. J. Diff. Equ. Appl. 16, 209–216 (2010) Jang, S., Elaydi, S.: Difference equations from discretization of a continuous epidemic model with immigration of infectives. Can. Appl. Math. Q. 11, 93–105 (2003) Izzo, G., Muroya, Y., Vecchio, A.: A general discrete time model of population dynamics in the presence of an infection. Disc. Dyn. Nat. Soc, Article ID 143019, p. 15 (2009) Christiansen, F.B., Fenchel, T.M.: Theories of populations in biological communities. Lecture Notes in Ecological Studies, vol. 20. Springer-Verlag, Berlin (1977) Zeng, G., Wang, F., Nieto, J.J.: Complexity of a delayed predator-prey model with impulsive harvest and holling type II functional response. Adv. Complex Syst. 11, 77–97 (2008) Bell, E.T.: Men of mathematics. Simon & Schuster, New York (1937) Hilger, S.: Analysis on measure chains- a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990) Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator prey and competition dynamic systems. Nonlinear Anal. RWA 7, 1193–1204 (2006) Tian, Y., Ge, W.: Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales. Nonlinear Anal. TMA 69, 2833–2842 (2008) Peterson, A.C., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Differ. Equ. Appl. 10, 1295–1306 (2004) Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006) DaCunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176, 381–410 (2005) Hamza, A.E., Oraby, K.M.: Stability of abstract dynamic equations on time scales. Adv. Differ. Equ. 2012, 143 (2012) Fang, H., Wang, Y.: Four periodic solutions for a food-limited two-species Gilpin-Ayala type predator-prey system with harvesting terms on time scales. Adv. Differ. Equ. 2013, 278 (2013) Gaines, R.E., Mawhin, J.L.: Coincidence degree and non-linear differential equations. Springer, Berlin (1977) Liu, Z.: Double periodic solutions for a ratio-dependent predator-prey system with harvesting terms on time scales. Discrete Dyn. Nat. Soc., Article ID 243974, p. 12 (2009) Zhu, Y., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator prey model with modified Leslie Gower Holling-type II schemes. J. Math. Anal. Appl. 384, 400–408 (2011) Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator prey system. SIAM J. Appl. Math. 58, 193–210 (1998) Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey predator fishery. J. Biol. Dyn. 3, 447–462 (2009) Ji, C., Jiang, D., Shi, N.: Analysis of a predator prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009) Ji, C., Jiang, D., Shi, N.: A note on a predator prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 377, 435–440 (2011) Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005) Lenzini, P., Rebaza, J.: Non-constant predator harvesting on ratio-dependent predator prey models. Appl. Math. Sci. 4, 791–803 (2010) Zhang, N., Chen, F., Su, Q., Wu, T.: Dynamic behaviors of a harvesting Leslie-Gower predator-prey model. Discrete Dynamics in Nature and Society, 2011, Article ID 473949, 14 pages (2011) Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator prey model with Michaelis Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013) Bohner, M., Peterson, A.: Dynamic equations on time scales: an introduction with applications. Birkauser, Boston (2001) Zhang, B., Fan, M.: A remark on the application of coincidence degree to periodicity of dynamic equations on time scales. J. Northeast Normal Univ. (Natural Science Edition) 39, 1–3 (2007) (in Chinese) Xia, Y.H., Gu, X., Wong, P.J.Y., Abbas, S.: Application of Mawhin’s coincidence degree and matrix spectral theory to a delayed system. Abstr. Appl. Anal., Article ID 940287, p. 19 (2012)