Periodic Korteweg de Vries equation with measures as initial data

Selecta Mathematica - Tập 3 Số 2 - Trang 115-159 - 1997
Jean Bourgain1
1IAS, School of Mathematics, Olden Lane, 08540, Princeton, NJ, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. GAFA 3 (1993), no. 2, 107–156.

C. Kenig, G. Ponce and L. Vega. Wellposedness and scattering results for the generalized Korteweg-de Vries equation via the extraction principle. Comm. Pure Appl. Math. 46 (1993), 527–560.

C. Kenig, G. Ponce and L. Vega. A bilinear estimate with application to the KdV equation. J. of the AMS 9 (1996), 573–603.

H. McKean and E. Trubowitz. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branchpoints. Comm. Pure Appl. Math. 29 (1976), 143–226.

E. Trubowitz. The inverse problem for periodic potentials. Comm. Pure Appl. Math. 30 (1977), 325–341.

S. Kuksin. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE’s. Comm. Math. Phys. 167 (1995), 531–552.

J. Pöschel, E. Trubowitz. Inverse Spectral Theory. Academic Press, 1987.