Performance of the precise point positioning method along with the development of GPS, GLONASS and Galileo systems

Measurement - Tập 164 - Trang 108009 - 2020
Damian Kiliszek1, Krzysztof Kroszczyński1
1Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland

Tài liệu tham khảo

Abd Rabbou, 2015, PPP Accuracy Enhancement Using GPS/GLONASS Observations in Kinematic Mode, Positioning, 6, 1, 10.4236/pos.2015.61001 A. Afifi, A. El-Rabbany, Enhanced model for precise point positioning with single and dual frequency GPS/Galileo observables, (2014), http://doi.org/10.5194/isprsarchives-XL-2-173-2014. Afifi, 2015, An Improved Model for Single-Frequency GPS/GALILEO Precise Point Positioning, Positioning, 6, 7, 10.4236/pos.2015.62002 Afifi, 2016, Improved Between-Satellite Single-Difference Precise Point Positioning Model Using Triple GNSS Constellations: GPS, Galileo, and BeiDou, Positioning, 7, 63, 10.4236/pos.2016.72006 A. Afifi, A. El-Rabbany, Precise Point Positioning Using Triple GNSS Constellations in Various Modes. Sensors (Basel), 16 (6) (2016b May 28). pii: E779. http://doi.org/10.3390/s16060779. Aggrey, 2019, Multi-GNSS precise point positioning with next-generation smartphone measurements, J. Spatial Sci. Bahadur, 2019, Comparative analysis of MGEX products for post-processing multi-GNSS PPP, Measurement, 145, 361, 10.1016/j.measurement.2019.05.094 Banville, 2017, On the estimation of higher-order ionospheric effects in precise point positioning, GPS Solut., 21, 1817, 10.1007/s10291-017-0655-0 Banville, 2020, On the interoperability of IGS products for precise point positioning with ambiguity resolution, J. Geodesy., 94, 10, 10.1007/s00190-019-01335-w J. Benedicto, Directions 2020: Galileo Moves Ahead, December 14, 2019, GPS World (Acces 20.01.2020) (https://www.gpsworld.com/directions-2020-galileo-moves-ahead/). Bury, 2020, Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces, J. Geodesy., 94 Cai, 2007, Precise point positioning using combined GPS and GLONASS observations, J. Glob. Position. Syst., 6, 13, 10.5081/jgps.6.1.13 Cai, 2014, Galileo Signal and Positioning Performance Analysis Based on Four IOV Satellites, J. Navigat., 67, 810, 10.1017/S037346331400023X Cai, 2015, Precise point positioning with quad-constellations: GPS BeiDou, GLONASS and Galileo, Adv. Space Res., 56, 133, 10.1016/j.asr.2015.04.001 C. Cai, G. Liu, Z. Yi, X. Cui, C. Kuang, Effect analysis of higher-order ionospheric corrections on quad-constellation GNSS PPP, Measur. Sci. Technol., 30 (2) (2019). 10.1088/1361-6501/aaf555. Capilla, 2017, Impact of multi-constellation products and ambiguity resolution in Precise Point Positioning for real-time measurements, Measurement, 100, 183, 10.1016/j.measurement.2016.12.047 W. Chen, C. Hu, Z. Li, Y. Chen, X. Ding, S. Gao, S. Ji, Kinematic GPS Precise Point Positioning for Sea Level Monitoring with GPS Buoy, Positioning, 1 (8) (2004). http://doi.org/10.5081/jgps.3.1.302. Elmezayen, 2019, Real-Time GPS/Galileo Precise Point Positioning Using NAVCAST Real-Time Corrections, Positioning, 10, 35, 10.4236/pos.2019.103003 Elmezayen, 2019, Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone, Sensors (Basel), 19, 2593, 10.3390/s19112593 M. Elsobeiey, A. El-Rabbany, An Efficient Precise Point Positioning Model for Near Real–Time Applications, in: Proceedings of the 2013 International Technical Meeting of The Institute of Navigation, San Diego, California, January 2013, pp. 318–324. Elsobeiey, 2016, Performance of real-time Precise Point Positioning using IGS real–time service, GPS Solut., 20, 565, 10.1007/s10291-015-0467-z I. Fernandez-Hernandez, G. Vecchione, Diaz-Pulido, Galileo Authentication: A Programme and Policy Perspective BREMEN, October 2018, in: Conference: 69th International Astronautical Congress - IAC2018 (2018). Y. Gao, X.B. Shen, Kinematic Processing Analysis of Carrier Phase based Precise Point Positioning, In: FIG XXII International Congress. Washington, D.C.USA (2002). Guo, 2017, The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning, Adv. Space Res., 59, 2714, 10.1016/j.asr.2016.05.018 Guo, 2017, Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX), GPS Solut., 21, 279, 10.1007/s10291-016-0523-3 Hadaś, 2015, IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solut., 19, 93, 10.1007/s10291-014-0369-5 Hadaś, 2019, Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation, GPS Solut., 23, 108, 10.1007/s10291-019-0900-9 Hong, 2019, Characteristics of inter-system biases in Multi-GNSS with precise point positioning, Adv. Space Res., 63, 3777, 10.1016/j.asr.2019.02.037 Hu, 2020, Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University, GPS Solut., 24, 15, 10.1007/s10291-019-0929-9 IGS (2014), Real-Time Service Fact Sheet (2014), https://kb.igs.org/hc/en-us/articles/115002196848-Real-Time-Service-Fact-Sheet-2014-. Kiliszek, 2018, Accuracy of Precise Point Positioning (PPP) with the use of different International GNSS Service (IGS) products and stochastic modelling, Geod. Cartogr., 67, 207 Kouba, 2001, GPS Precise Point Positioning Using IGS Orbit Products, Solutions, 5, 12, 10.1007/PL00012883 J. Kouba, T. Springer, New IGS Station and Satellite Clock Combination, GPS Solut., 4 (4) (2001) 31–36. http://doi.org/10.1007/PL00012863. J. Kouba, A guide to using international GNSS service (IGS) products, September 2015 update (2015). http://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products. Krzan, 2020, Antenna phase center correction differences from robot and chamber calibrations: the case study LEIAR25, GPS Solut., 24, 44, 10.1007/s10291-020-0957-5 R. Langley, S. Banville, P. Steingerberger, First Results Precise Positioning with Galileo Prototype Satellites, GPS World (Access 20.01.2020r.) (2012), https://www.gpsworld.com/first-results-precise-positioning-with-galileo-prototype-satellites/. Li, 2015, Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo, J. Geod., 89, 607, 10.1007/s00190-015-0802-8 Li, 2015, Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS Galileo and BeiDou, Sci. Rep., 5, 8328, 10.1038/srep08328 Li, 2020, Galileo PPP rapid ambiguity resolution with five-frequency observations, GPS Solut., 24, 24, 10.1007/s10291-019-0930-3 Liu, 2016, Influence of higher-order ionospheric delay correction on GPS precise orbit determination and precise positioning, Geodesy. Geodynam., 7, 369, 10.1016/j.geog.2016.06.005 Liu, 2019, Improving the Performance of Galileo Uncombined Precise Point Positioning Ambiguity Resolution Using Triple-Frequency Observations, Remote Sens., 11, 341, 10.3390/rs11030341 Lou, 2016, Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models, GPS Solut., 20, 849, 10.1007/s10291-015-0495-8 Maciuk, 2019, Monitoring of Galileo on-board oscillators variations, disturbances & noises, Measurement, 147, 10.1016/j.measurement.2019.07.071 Montenbruck, 2017, The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, Prospects and Challenges, Adv. Space Res., 10.1016/j.asr.2017.01.011 Nykiel, 2016, Precise Point Positioning Method Based on Wide-lane and Narrowlane Phase Observation and Between Satellites Single Differencing Ogutcu, 2020, Assessing the Contribution of Galileo to GPS+GLONASS PPP: Towards Full Operational Capability, Measurement, 151, 10.1016/j.measurement.2019.107143 Ozulu, 2015, A Comparative Study for Accuracy Assessment of PPP Technique Using GPS and Glonass in Urban Areas, Measurement, 69, 1, 10.1016/j.measurement.2015.03.012 L. Pan, X. Zhang, J. Liu, X. Li, Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo, J. Navigat., 70 (3) (2017) 465–482. L. Pan, X. Zhang, X. Li, X. Li, C. Lu, J. Liu, Q. Wang, Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo, Adv. Space Res., 63 (9) (2019a). http://doi.org/10.1016/j.asr.2017.07.029. Pan, 2019, A comparison of three widely used GPS triple-frequency precise point positioning models, GPS Solut., 23, 121, 10.1007/s10291-019-0914-3 D. Pandey, R. Dwivedi, O. Dikshit, A.K. Singh, GPS and glonass combined static precise point positioning (PPP), Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, (2016) pp. 483–488. http://doi.org/10.5194/isprs-archives-XLI-B1-483-2016. Paziewski, 2018, On the Applicability of Galileo FOC Satellites with Incorrect Highly Eccentric Orbits: An Evaluation of Instantaneous Medium-Range Positioning, Remote Sens., 10, 208, 10.3390/rs10020208 Petit, G. i B. Luzum, eds. (2010). IERS Conventions (2010). IERS. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp. isbn: 3-89888-989-6. D. Psychas, Delikaraoglou, Precise Point Positioning in a New GNSS Era, Quod Erat Demonstrandum, in: quest of the ultimate geodetic insightEdition: Special Edition for Professor Emeritus Athanasios Dermanis, School of Rural and Surveying Engineering, AUTh. Chapter: 14Publisher: ZITI (2018). Robustelli, 2019, Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites †, Sensors (Basel)., 19, 1786, 10.3390/s19081786 Sośnica, K., Prange, L., Kaźmierski, . et al. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes. J Geod 92, 131–148 (2018). DOI:10.1007/s00190-017-1050-x Steigenberger, 2011, Precise orbit determination of GIOVE-B based on the CONGO network, J. Geod., 85, 357, 10.1007/s00190-011-0443-5 P. Steigenberger, U. Hugentobler, O. Montenbruck, First Demonstration of Galileo-Only Positioning. GPS World, 24 (2) (2013) 14–15. Steigenberger, 2015, Montenbruck O, Galileo orbit and clock quality of the IGS Multi-GNSS Experiment, Adv. Space Res., 55, 269, 10.1016/j.asr.2014.06.030 Su, 2020, Assessment of multi-frequency GNSS PPP models using GPS, Beidou, GLONASS, Galileo and QZSS, Meas. Sci. Technol., 10.1088/1361-6501/ab69d5 J. Tegedor, O. Øvstedal, E. Vigen, Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou, J. Geodetic Sci., 4 (1) (2014), Retrieved 15 Jan. 2020, from. http://doi.org/10.2478/jogs-2014-0008. Teunissen, 2015, Review and principles of PPP-RTK methods, J. Geod., 89, 217, 10.1007/s00190-014-0771-3 Wang, 2018, Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation, GPS Solut., 22, 75, 10.1007/s10291-018-0738-6 B. Wang, J. Chen, B. Wang, Analysis of Galileo Clock Products of MGEX-ACs, in: 2019 European Navigation Conference (ENC), Warsaw, Poland, (2019), pp. 1–6. http://doi.org/10.1109/EURONAV.2019.8714186. Wang, 2019, Performance of BDS-3: satellite visibility and dilution of precision, GPS Solut., 23, 56, 10.1007/s10291-019-0847-x Wang, 2020, A comprehensive assessment of interpolation methods for regional augmented PPP using reference networks with different scales and terrains, Measurement, 150, 107067, 10.1016/j.measurement.2019.107067 Wanninger, 2012, Carrier-phase inter-frequency biases of GLONASS receivers, J. Geodesy., 86, 139, 10.1007/s00190-011-0502-y Xia, 2019, Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP, Adv. Space Res., 63, 2784, 10.1016/j.asr.2018.06.008 Xiao, 2019, Estimating and assessing Galileo satellite fractional cycle bias for PPP ambiguity resolution, GPS Solut., 23, 3, 10.1007/s10291-018-0793-z Yang, 2019, Introduction to BeiDou-3 navigation satellite system, Navigation, 66, 7, 10.1002/navi.291 Zhang, 2019, Performance of Galileo: Global coverage, precise orbit determination, and precise positioning, Adv. Space Res., 64, 299, 10.1016/j.asr.2019.03.042 Zhao, 2019, Influence of station density and multi-constellation GNSS observations on troposphere tomography, Annales Geophysicae, 37, 15, 10.5194/angeo-37-15-2019 F. Zhou, D. Dong, W. Li, et al., GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations, GPS Solut., 22 (33) (2018), http://doi.org/10.1007/s10291-018-0699-9. Zumberge, 1997, Precise Point Processing for the Efficient and Robust Analysis of GPS Data from Large Networks, J. Geophys. Res., 102, 5005, 10.1029/96JB03860 The current constellation of the Galileo system. https://www.gsc-europa.eu/system-service-status/constellation-information (last accessed: 24.02.2020). The current constellation of the GLONASS system. https://www.glonass–iac.ru/en/GLONASS/index.php (last accessed: 24.02.2020). The current constellation of the GPS system. https://www.gps.gov/systems/gps/space/ (last accessed: 24.02.2020). The comparison of MGEX products for GLONASS between the Analysis Center. http://mgex.igs.org/analysis/ephcmp_GLO.php (last accessed: 24.02.2020).