Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid

Journal of Chemical Technology and Biotechnology - Tập 91 Số 1 - Trang 72-81 - 2016
Irene Carra1,2, J.A. Sánchez Pérez1,2, S. Malato1,3, Olivier Autin4, Bruce Jefferson4, Peter Jarvis4
1CIESOL Joint Centre of the University of Almería‐CIEMAT 04120 Almería Spain
2Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
3Plataforma Solar de Almería, CIEMAT, 04200 Tabernas, Almería, Spain
4Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK

Tóm tắt

AbstractBACKGROUNDThis work studied the performance of different advanced oxidation processes (AOPs) as tertiary treatment for removal of the pesticide acetamiprid from water. Specifically, UV, UV/TiO2, UV/H2O2/Fe, and two systems with persulfate (PS), UV/PS and UV/PS/Fe, were evaluated.RESULTSThe study was carried out in deionised water, synthetic water from a secondary effluent and real effluent from a conventional activated sludge effluent (CAS effluent). In addition, the effect of humic acids, lignin‐derivative and lauryl sulphate was investigated as organic matter that affects AOP efficiency.CONCLUSIONSPhoto‐Fenton at natural pH proved to be the most efficient process in all matrices. The persulfate systems have also shown that they have great potential for micropollutant removal. It was found that humic acids reduced degradation efficiency for UV/H2O2/Fe and UV/PS/Fe due to competition with radicals. Humic acids had a negative impact on UV photolysis at high concentration due to the absorptivity of UV light. Lignin had a negative effect on AOPs that used iron, forming Fe(II)‐complexes with high absorptivity which act as a light filter. For lauryl sulphate, its chemical structure did not favour the formation of iron complexes at natural pH, resulting in similar degradation rates for UV/H2O2/Fe, UV/H2O2, UV/PS and UV/PS/Fe. © 2014 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1016/j.trac.2008.09.010

10.1016/j.envpol.2008.09.020

10.1016/j.scitotenv.2012.08.061

10.1016/j.envpol.2012.01.038

10.2166/wst.2007.428

10.1146/annurev-environ-100809-125342

EFSA, 2013, Panel on plant protection products and their residues (PPR), scientific opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid, EFSA J, 12, 3471

10.1016/j.pestbp.2012.08.004

10.1016/j.cropro.2007.02.004

10.1016/j.cropro.2011.04.006

10.1016/j.pestbp.2010.06.022

10.1016/j.cropro.2003.08.018

10.1016/j.cattod.2010.09.025

10.1016/j.watres.2013.07.039

10.1016/j.cattod.2009.06.018

10.1016/j.watres.2011.09.015

10.1016/j.watres.2009.02.029

10.1016/S1093-0191(03)00031-5

10.1016/j.jhazmat.2011.09.008

10.1016/S0043-1354(00)00195-0

10.1016/S0043-1354(03)00317-8

10.1016/j.watres.2011.11.022

10.1007/BF00365615

10.1016/j.procbio.2005.07.005

Kroschwitz JI, 2004, Kirk‐Othmer Encyclopedia of Chemical Technology, 7

10.1016/j.chroma.2004.11.017

10.1016/S1010-6030(98)00375-X

10.1098/rspa.1956.0102

10.1016/j.desal.2006.11.025

10.1016/j.agee.2005.12.009

10.1016/j.chemosphere.2006.07.051

10.1016/j.chroma.2006.02.038

EPA, 2002, Office of prevention, pesticides and toxic substances, OPP‐2002‐0333

10.1021/ja903856t

10.1016/j.talanta.2004.10.001

10.1016/j.chemosphere.2008.08.043

10.1016/j.apcatb.2013.02.045

10.1002/jctb.4299

10.1016/j.jiec.2013.07.012

Blanco Gálvez J, 2003, Solar Detoxification

10.1021/es402472x

10.2166/9781780401447

10.1080/10643380500326564

10.1016/j.chemosphere.2013.12.037

10.1039/j29700001087

10.1016/j.apcatb.2004.05.025

10.1016/j.chemosphere.2004.01.029

10.1016/j.jhazmat.2006.10.076

10.1016/j.jhazmat.2009.08.010

10.1016/j.watres.2013.01.021

10.1007/s10311-004-0086-3

10.1021/jf00014a031

10.1016/S0304-4165(99)00117-8