Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction

Computers & Structures - Tập 87 Số 11-12 - Trang 793-801 - 2009
Joris Degrieck1, Klaus‐Jürgen Bathe2, Jan Vierendeels1
1Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Oost-Vlaanderen, Belgium
2Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Farhat, 2006, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput Methods Appl Mech Eng, 195, 1973, 10.1016/j.cma.2004.11.031

Willcox K, Paduano J, Peraire J. Low order aerodynamic models for aeroelastic control of turbomachines. In: Proceedings of 40th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials (SDM) Conference. St Louis, MO, USA; 1999. p. 1–11.

Agamloh E, Wallace A, von Jouanne A. Application of fluid–structure interaction simulation of an ocean wave energy extraction device. In: Proceedings of 44th AIAA aerospace sciences meeting and exhibit, vol. AIAA 2006-1001. Reno, NV, USA; 2006. p. 1–14.

Stein, 2004, Numerical simulation of soft landing for clusters of cargo parachutes, 1

dos Santos N, Gerbeau JF, Bourgat JF. Partitioned FSI strategy for simulations of a thin elastic valve. In: Wesseling P, Oñate E, Périaux J, editors. European conference on computational fluid dynamics ECCOMAS CFD 2006. Delft, The Netherlands: ECCOMAS; 2006. p. 1–10.

Dumont, 2007, Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model, J Biomech Eng – Trans ASME, 129, 558, 10.1115/1.2746378

Taylor, 1999, Predictive medicine: computational techniques in therapeutic decision-making, Comput Aid Surg, 4, 231, 10.3109/10929089909148176

Bathe, 1999, A fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery, J Biomech Eng, 121, 361, 10.1115/1.2798332

Kaazempur-Mofrad, 2003, The role of simulation in understanding biological systems, Comput Struct, 81, 715, 10.1016/S0045-7949(02)00481-9

Wilson, 2005, Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease, Comput Aid Surg, 10, 257, 10.3109/10929080500230445

Bathe, 1995, Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions, Comput Struct, 56, 193, 10.1016/0045-7949(95)00015-9

Rugonyi, 2001, On the finite element analysis of fluid flows fully coupled with structural interactions, Comput Model Eng Sci, 2, 195

Heil, 2004, An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems, Comput Methods Appl Mech Eng, 193, 1, 10.1016/j.cma.2003.09.006

Bathe, 2004, Finite element developments for general fluid flows with structural interactions, Int J Numer Methods Eng, 60, 213, 10.1002/nme.959

Hron, 2006, A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, vol. 53, 146

Matthies, 2003, Partitioned strong coupling algorithms for fluid–structure interaction, Comput Struct, 81, 805, 10.1016/S0045-7949(02)00409-1

Matthies, 2006, Algorithms for strong coupling procedures, Comput Methods Appl Mech Eng, 195, 2028, 10.1016/j.cma.2004.11.032

Gerbeau, 2003, A quasi-Newton algorithm based on a reduced model for fluid–structure interaction problems in blood flows, ESAIM: Math Model Numer Anal, 37, 631, 10.1051/m2an:2003049

Gerbeau, 2005, Fluid–structure interaction in blood flows on geometries based on medical imaging, Comput Struct, 83, 155, 10.1016/j.compstruc.2004.03.083

van Brummelen E, Michler C, de Borst R. Interface-GMRES(R) acceleration of subiteration for fluid–structure-interaction problems. Report DACS-05-001 2005. Available from: http://www.em.lr.tudelft.nl/downloads/DACS-05-001.pdf.

Michler, 2006, Error-amplification analysis of subiteration-preconditioned GMRES for fluid–structure interaction, Comput Methods Appl Mech Eng, 195, 2124, 10.1016/j.cma.2005.01.018

Michler, 2005, An interface Newton–Krylov solver for fluid–structure interaction, Int J Numer Methods Fluids, 47, 1189, 10.1002/fld.850

Causin, 2005, Added-mass effect in the design of partitioned algorithms for fluid–structure problems, Comput Methods Appl Mech Eng, 194, 4506, 10.1016/j.cma.2004.12.005

Degroote, 2008, Stability of a coupling technique for partitioned solvers in FSI applications, Comput Struct, 86, 2224, 10.1016/j.compstruc.2008.05.005

Küttler, 2008, Fixed-point fluid–structure interaction solvers with dynamic relaxation, Comput Mech, 10.1007/s00466-008-0255-5

Lesoinne, 1998, A higher-order subiteration free staggered algorithm for non-linear transient aeroelastic problems, AIAA J, 36, 1754, 10.2514/2.7555

Piperno, 1995, Partitioned procedures for the transient solution of coupled aeroelastic problems – Part I: model problem, theory and two-dimensional application, Comput Methods Appl Mech Eng, 124, 79, 10.1016/0045-7825(95)92707-9

van Zuijlen, 2007, Higher-order time integration through smooth mesh deformation for 3D fluid structure interaction simulations, J Comput Phys, 224, 414, 10.1016/j.jcp.2007.03.024

Vierendeels, 2007, Implicit coupling of partitioned fluid–structure interaction problems with reduced order models, Comput Struct, 85, 970, 10.1016/j.compstruc.2006.11.006

Vierendeels, 2006, Implicit coupling of partitioned fluid–structure interaction solvers using reduced-order models, vol. 53, 1

Michler, 2003, The relevance of conservation for stability and accuracy of numerical methods for fluid structure interaction, Comput Methods Appl Mech Eng, 192, 4195, 10.1016/S0045-7825(03)00392-X

Fernandez, 2005, A Newton method using exact Jacobians for solving fluid–structure coupling, Comput Struct, 83, 127, 10.1016/j.compstruc.2004.04.021

Bathe, 2007, Benchmark problems for incompressible fluid flows with structural interactions, Comput Struct, 85, 628, 10.1016/j.compstruc.2007.01.025

Mok, 2001, Accelerated iterative substructuring schemes for instationary fluid–structure interaction, 1325

Zhang, 2001, Direct and iterative computing of fluid flows fully coupled with structures, vol. 2

ADINA R&D Inc., Watertown, MA, USA. Theory and modeling guide volume III: ADINA CFD & FSI; 2008. Report ARD 08-9.

Lesoinne, 1996, Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations, Comput Methods Appl Mech Eng, 134, 71, 10.1016/0045-7825(96)01028-6

Bathe, 2007, Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme, Comput Struct, 85, 437, 10.1016/j.compstruc.2006.09.004

Golub, 1996

Bathe, 2002, A flow-condition-based interpolation finite element procedure for incompressible fluid flows, Comput Struct, 80, 1267, 10.1016/S0045-7949(02)00077-9

Sussman, 1987, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput Struct, 26, 357, 10.1016/0045-7949(87)90265-3

Bathe, 1996

Bathe, 2008, Encyclopedia of computer science and engineering