Performance of a forward osmosis mass exchanger based on detailed mass transfer boundary layer analysis

Desalination - Tập 496 - Trang 114708 - 2020
Swarnava Saha1, Sourav Mondal2
1Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur-721302, India
2Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Tài liệu tham khảo

Buonomenna, 2015, Organic solvent nanofiltration in pharmaceutical industry, Sep. Purif. Rev., 44, 157, 10.1080/15422119.2014.918884 Pusch, 1982, Synthetic membranes—preparation, structure, and application, Angew. Chem. Int. Ed. Engl., 21, 660, 10.1002/anie.198206601 Cath, 2006, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281, 70, 10.1016/j.memsci.2006.05.048 Hua, 2007, Performance study of ceramic microfiltration membrane for oily wastewater treatment, Chem. Eng. J., 128, 169, 10.1016/j.cej.2006.10.017 Li, 2006, Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes, Desalination, 196, 76, 10.1016/j.desal.2005.11.021 Lau, 2009, Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review, Desalination, 245, 321, 10.1016/j.desal.2007.12.058 Radjenović, 2008, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res., 42, 3601, 10.1016/j.watres.2008.05.020 Böddeker, 1977, Principles of osmotic desalination, Angew. Chem. Int. Ed. Engl., 16, 607, 10.1002/anie.197706071 Huang, 2013, Novel hydrophilic nylon 6,6 microfiltration membrane supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 437, 141, 10.1016/j.memsci.2013.01.046 Shen, 2017, Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment, J. Membr. Sci., 534, 46, 10.1016/j.memsci.2017.04.008 Chen, 2013, Gypsum (CaSO4·2H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis, Membranes, 3, 354, 10.3390/membranes3040354 Li, 2012, Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis, Water Res., 46, 195, 10.1016/j.watres.2011.10.051 Liu, 2014, Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes, J. Membr. Sci., 450, 153, 10.1016/j.memsci.2013.09.001 Valladares Linares, 2016, Life cycle cost of a hybrid forward osmosis—low pressure reverse osmosis system for seawater desalination and wastewater recovery, Water Res., 88, 225, 10.1016/j.watres.2015.10.017 Hickenbottom, 2013, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination, 312, 60, 10.1016/j.desal.2012.05.037 Coday, 2014, The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams, Desalination, 333, 23, 10.1016/j.desal.2013.11.014 Lutchmiah, 2014, Forward osmosis for application in wastewater treatment: a review, Water Res., 58, 179, 10.1016/j.watres.2014.03.045 Sant’Anna, 2012, Membrane concentration of liquid foods by forward osmosis: process and quality view, J. Food Eng., 111, 483, 10.1016/j.jfoodeng.2012.01.032 Zhao, 2012, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci., 396, 1, 10.1016/j.memsci.2011.12.023 Linares, 2014, Forward osmosis niches in seawater desalination and wastewater reuse, Water Res., 66, 122, 10.1016/j.watres.2014.08.021 Boo, 2013, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation, J. Membr. Sci., 444, 148, 10.1016/j.memsci.2013.05.004 Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477 Chung, 2012, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opin. Chem. Eng., 1, 246, 10.1016/j.coche.2012.07.004 Chung, 2012, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287, 78, 10.1016/j.desal.2010.12.019 Cui, 2018, Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery, Nat. Commun., 9, 1426, 10.1038/s41467-018-03612-2 Field, 2013, Mass transfer limitations in forward osmosis: are some potential applications overhyped, Desalination, 318, 118, 10.1016/j.desal.2013.01.025 McCutcheon, 2005, A novel ammonia–carbon dioxide forward (direct) osmosis desalination process, Desalination, 174, 1, 10.1016/j.desal.2004.11.002 McCutcheon, 2006, Desalination by a novel ammonia–carbon dioxide forward osmosis process: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278, 114, 10.1016/j.memsci.2005.10.048 McGinnis, 2013, Pilot demonstration of the NH3CO2 forward osmosis desalination process on high salinity brines, Desalination, 312, 67, 10.1016/j.desal.2012.11.032 R.L. McGinnis, Osmotic desalination process, US Patent 7,560,029 B2 (2002). Kravath, 1975, Desalination of seawater by direct osmosis, Desalination, 16, 151, 10.1016/S0011-9164(00)82089-5 Humanitarian Forward Osmosis Water Filtration, HTI Hydropack: http://www.chynasea.com/HydroPack.html; https://www.businesswire.com/news/home/20120119006576/en/HTI-Water-Filters-Portable-Shelters-Disaster-Relief. Lambrechts, 2019, Performance and energy consumption evaluation of a fertiliser drawn forward osmosis (FDFO) system for water recovery from brackish water, Desalination, 456, 64, 10.1016/j.desal.2019.01.016 Phuntsho, 2011, A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions, J. Membr. Sci., 375, 172, 10.1016/j.memsci.2011.03.038 L. Francis, O. Ogunbiyi, J. Saththasivam, J. Lawler, Z. Liu, A comprehensive review of forward osmosis and niche applications, Environ. Sci.: Water Res. Technol. 6 (2020) 1986–2015. Bamaga, 2009, Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units, Desalination and Wat. Treat., 5, 183, 10.5004/dwt.2009.574 P. G. Nicoll, Forward osmosis as a pre-treatment to reverse osmosis, The International Desalination Association World Congress on Desalination and Water Reuse 2013/Tianjin, China. Shaffer, 2012, Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy, J. Membr. Sci., 415, 1, 10.1016/j.memsci.2012.05.016 Coday, 2014, The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams, Desalination, 333, 23, 10.1016/j.desal.2013.11.014 Hoover, 2011, Forward with osmosis: emerging applications for greater sustainability, Environ. Sci. Technol., 45, 9824, 10.1021/es202576h F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, John Wiley and Sons, Ed. 4 (2002). L.D. Banchik, M.H. Sharqawy, J.H. Lienhard V, Effectiveness–mass transfer units (ε–MTU) model of a reverse osmosis membrane mass exchanger, J. Membr. Sci. 458 (2014) 189–198. M.H. Sharqawy, L.D. Banchik, J.H. Lienhard V, Effectiveness–mass transfer units (ε–MTU) model of an ideal pressure retarded osmosis membrane mass exchanger, J. Membr. Sci. 445 (2013) 211–219. Mazlan, 2016, Energy consumption for desalination—a comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes, Desalination, 377, 138, 10.1016/j.desal.2015.08.011 Mondal, 2017, Novel approach for sizing forward osmosis membrane systems, J. Membr. Sci., 541, 321, 10.1016/j.memsci.2017.07.019 L.D. Banchik, A.M. Weiner, B. Al-Anzi, J.H. Lienhard V, System scale analytical modeling of forward and assisted forward osmosis mass exchangers with a case study on fertigation, J. Membr. Sci. 510 (2016) 533–545. Xiao, 2012, A modeling investigation on optimizing the design of forward osmosis hollow fiber modules, J. Membr. Sci., 392–393, 76, 10.1016/j.memsci.2011.12.006 Holloway, 2007, Forward osmosis for concentration of anaerobic digester centrate, Water Res., 41, 4005, 10.1016/j.watres.2007.05.054 Phuntsho, 2014, Osmotic equilibrium in the forward osmosis process: modelling, experiments and implications for process performance, J. Membr. Sci., 453, 240, 10.1016/j.memsci.2013.11.009 Sagiv, 2011, Finite element analysis of forward osmosis process using NaCl solutions, J. Membr. Sci., 379, 86, 10.1016/j.memsci.2011.05.042 Ge, 2013, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442, 225, 10.1016/j.memsci.2013.03.046 E.M.V. Hoek, M. Guiver, V. Nikonenko, V.V. Tarabara, A.L. Zydney, Membrane terminology, in: E.M.V. Hoek, V.V. Tarabara (Eds.), Encyclopedia of Membrane Science and Technology, Wiley, Hoboken, NJ, Vol. 3, pp (2013) 2219–2228. De, 1997, Generalized integral and similarity solutions of the concentration profiles for osmotic pressure controlled ultrafiltration, J. Membr. Sci., 130, 99, 10.1016/S0376-7388(97)00018-5 Elimelech, 1998, A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory, J. Membr. Sci., 145, 223, 10.1016/S0376-7388(98)00078-7 Bhattacharya, 1997, Concentration polarization, separation factor, and Peclet number in membrane processes, J. Membr. Sci., 132, 73, 10.1016/S0376-7388(97)00047-1 Kim, 2005, Modeling concentration polarization in reverse osmosis processes, Desalination, 186, 111, 10.1016/j.desal.2005.05.017 Belytschko, 1995, A coupled finite element-element-free Galerkin method, Comp. Mech., 17, 186, 10.1007/BF00364080 She, 2016, Membrane fouling in osmotically driven membrane processes: a review, J. Membr. Sci., 499, 201, 10.1016/j.memsci.2015.10.040 McCutcheon, 2006, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278, 114, 10.1016/j.memsci.2005.10.048 Mulder, 1996