Performance of a deep learning-based identification system for esophageal cancer from CT images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, Toh Y, Doki Y, Naomoto Y, Nemoto K, Booka E, Matsubara H, Miyazaki T, Muto M, Yanagisawa A, Yoshida M. Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 1. Esophagus. 2019;16:1–24.
Tachimori Y, Ozawa S, Numasaki H, Fujishiro M, Matsubara H, Oyama T, Shinoda M, Toh Y, Udagawa H, Uno T. Comprehensive registry of esophageal cancer in Japan, 2009. Esophagus. 2016;13:110–37.
Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, Toh Y. Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 2. Esophagus. 2019;16:25–43.
Takeuchi H, Miyata H, Gotoh M, Kitagawa Y, Baba H, Kimura W, Tomita N, Nakagoe T, Shimada M, Sugihara K, Mori M. A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Ann Surg. 2014;260:259–66.
Goense L, Meziani J, Ruurda JP, van Hillegersberg R. Impact of postoperative complications on outcomes after oesophagectomy for cancer. Br J Surg. 2019;106:111–9.
Agzarian J, Visscher SL, Knight AW, Allen MS, Cassivi SD, Nichols FC III, Shen KR, Wigle D, Blackmon SH. The cost burden of clinically significant esophageal anastomotic leaks-a steep price to pay. J Thorac Cardiovasc Surg. 2019;157:2086–92.
Fu SJ, Ho VP, Ginsberg J, Perry Y, Delaney CP, Linden PA, Towe CW. Complications, not minimally invasive surgical technique, are associated with increased cost after esophagectomy. Minim Invasive Surg. 2016;2016:7690632.
OECD health care activities 2016. http://www.oecd.org/els/health-systems/health-data.htm (Accessed April 1, 2019).
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.
Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, Ishihara S, Kumagai Y. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019;89:25–32.
Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer. 2018;21:653–60.
Gruetzemacher R, Gupta A, Paradice D. 3D deep learning for detecting pulmonary nodules in CT scans. J Am Med Inform Assoc. 2018;25:1301–10.
Fukushima K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks. 1988;1:119–30.
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989;1:541–51.
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.
Simonyan K, Zisserman A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556.
Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. IEEE Conf Comput Vis Patt Recogn 2009;248–55.
Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.
Selvaraju RR, Cogswell C, Das A, Vedantam R, Parikh D, Batraet D et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. ICCV. 2017;618–26.
Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, Yang Z, Ni B, Gao P, Wang P, Hua Y. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer Res. 2018;78:6881–9.
Koh PW, Percy L. (2017) Understanding black-box predictions via influence functions. arXiv. 1703.04730.
Zhang Q-S, Zhu S-C. Visual interpretability for deep learning: a survey. Front Inform Tech El. 2018;19:27–39.
Omeiza D, Speakman S, Cintas C, Weldermariam K. (2019) Smooth grad-cam++: an enhanced inference level visualization technique for deep convolutional neural network models. arXiv 1908.01224.
Cheng CT, Ho TY, Lee TY, Chang CC, Chou CC, Chen CC, Chung IF, Liao CH. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol. 2019;29:5469–77.