Hiệu suất tại Nơi Làm Việc: Đánh Giá Phê Phán về Việc Tăng Cường Nhận Thức

Springer Science and Business Media LLC - Tập 16 - Trang 107-114 - 2022
Cengiz Acarturk1,2, Baris Mucen3
1Department of Cognitive Science, Jagiellonian University, Krakow, Poland
2Department of Cognitive Science, Middle East Technical University, Ankara, Turkey
3Department of Sociology, Middle East Technical University, Ankara, Turkey

Tóm tắt

Các cuộc tranh luận phổ biến về tổ chức công việc trong tương lai thông qua các công nghệ trí tuệ nhân tạo tập trung vào việc thay thế con người bằng các công nghệ mới. Trong bài luận này, chúng tôi phản đối tuyên bố này bằng cách theo dõi chặt chẽ những gì đã được phát triển như là công nghệ trí tuệ nhân tạo và phân tích cách thức hoạt động của chúng, đặc biệt chú trọng vào các nghiên cứu có thể ảnh hưởng đến tổ chức công việc. Chúng tôi phát triển lập luận này bằng cách chỉ ra rằng các nghiên cứu và phát triển gần đây trong công nghệ trí tuệ nhân tạo tập trung vào việc phát triển các mô hình hiệu suất chính xác và rõ ràng, điều này tiếp tục định hình các mẫu tổ chức công việc. Chúng tôi đề xuất rằng sự quan tâm gia tăng đối với mối quan hệ giữa nhận thức con người và hiệu suất sẽ sớm đưa nhận thức con người trở thành trọng tâm trong các hệ thống trí tuệ nhân tạo tại nơi làm việc. Cụ thể hơn, chúng tôi khẳng định rằng việc đo lường tải nhận thức sẽ định hình hiệu suất con người trong các hệ thống sản xuất trong thời gian tới.

Từ khóa

#trí tuệ nhân tạo #hiệu suất lao động #nhận thức con người #tổ chức công việc #tải nhận thức

Tài liệu tham khảo

Pustovrh T, Mali F, Arnaldi S (2018) Are better workers also better humans? On pharmacological cognitive enhancement in the workplace and conflicting societal domains. NanoEthics 12(3):301–313. https://doi.org/10.1007/s11569-018-0332-y Roco MC, Bainbridge WS (2003) Overview converging technologies for improving human performance: Nanotechnology, biotechnology, information technology, and cognitive science (NBIC). In: Roco MC, Bainbridge WS (eds) Converging technologies for improving human performance. Springer, Dordrecht, pp 1–28 Rosa H (ed) (2010) High-speed society: Social acceleration, power, and modernity. Penn State University Press Rosheim ME (1994) Robot evolution: The development of anthrobotics. John Wiley & Sons, New York Koetsier T (2001) On the prehistory of programmable machines: Musical automata, looms, calculators. Mech Mach Theory 36(5):589–603. https://doi.org/10.1016/S0094-114X(01)00005-2 Turing A (1936) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond Math Soc 2:230–265 Turing A (1950) Computing machinery and intelligence. Mind 59:433–460 McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115–133. https://doi.org/10.1007/BF02478259 Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x Newell A, Simon H (1956) The logic theory machine: A complex information processing system. IRE Trans Inf Theory 2:61–79. https://doi.org/10.1109/TIT.1956.1056797 Gelernter H (1959) Realization of a geometry theorem proving machine. In: Proceedings of the IFIP Congress, pp 273–281 Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):211–229. https://doi.org/10.1147/rd.33.0210 Onaral B (2020) Responsible brain-system integration. Proceedings of the International Conference on Applied Human Factors and Ergonomics, Springer, Cham, pp 105–110. https://doi.org/10.1007/978-3-030-51041-1_15 Funge J, Tu X, Terzopoulos D (1999) Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp 29–38. https://doi.org/10.1145/311535.311538 Card SK, Moran TP, Newell A (1983) The psychology of human computer interaction. Lawrence Erlbaum Associates, Hillsdale McClelland JL, Rumelhart DE, PDP Research Group (1986) Parallel distributed processing. Explorations in the microstructure of cognition (vol. 1: Foundations). MIT Press, Cambridge, MA Anderson JR, Matessa M, Lebiere C (1997) ACT-R: A theory of higher level cognition and its relation to visual attention. Hum Comput Interact 12(4):439–462. https://doi.org/10.1207/s15327051hci1204_5 Griffiths TL, Chater N, Kemp C, Perfors A, Tenenbaum JB (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends Cogn Sci 14(8):357–364. https://doi.org/10.1016/j.tics.2010.05.004 McCorduck P, Cfe C (2004) Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press Buchanan BG (2005) A (very) brief history of artificial intelligence. AI Mag 26(4):53. https://doi.org/10.1609/aimag.v26i4.1848 Haenlein M, Kaplan A (2019) A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif Manag Rev 61(4):5–14. https://doi.org/10.1177/0008125619864925 Boden MA (2008) Mind as machine: A history of cognitive science. Oxford University Press, Oxford Li L, Zheng N-N, Wang F-Y (2019) On the crossroad of artificial intelligence: A revisit to Alan Turing and Norbert Wiener. IEEE Transactions on Cybernetics 49(10):3618–3626. https://doi.org/10.1109/TCYB.2018.2884315 Wiener N (1948) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge, MA LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539 Castelvecchi D (2016) Can we open the black box of AI? Nature 538(7623):20–23. https://doi.org/10.1038/538020a Neumann U, Majoros A (1998) Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. Proceedings of IEEE Virtual Reality Annual International Symposium (Cat. No. 98CB36180), IEEE, pp 4–11. https://doi.org/10.1109/VRAIS.1998.658416 de Vocht F, van Drooge H, Engels H, Kromhout H (2006) Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. J Magn Reson Imaging 23(2):197–204. https://doi.org/10.1002/jmri.20485 Layer JK, Karwowski W, Furr A (2009) The effect of cognitive demands and perceived quality of work life on human performance in manufacturing environments. Int J Ind Ergon 39(2):413–421. https://doi.org/10.1016/j.ergon.2008.10.015 Siukola AE, Virtanen PJ, Luukkaala TH, Nygård CH (2011) Perceived working conditions and sickness absence-a four-year follow-up in the food industry. Saf Health Work 2(4):313–320. https://doi.org/10.5491/SHAW.2011.2.4.313 Fujino Y, Mizoue T, Izumi H, Kumashiro M, Hasegawa T, Yoshimura T (2001) Job stress and mental health among permanent night workers. J Occup Health 43(6):301–306. https://doi.org/10.1539/joh.43.301 Mosadeghrad AM, Ferlie E, Rosenberg D (2011) A study of relationship between job stress, quality of working life and turnover intention among hospital employees. Health Serv Manag Res 24(4):170–181. https://doi.org/10.1258/hsmr.2011.011009 Cottini E, Lucifora C (2013) Mental health and working conditions in Europe. ILR Rev 66(4):958–988. https://doi.org/10.1177/001979391306600409 Kim H, Ji J, Kao D (2011) Burnout and physical health among social workers: A three-year longitudinal study. Soc Work 56(3):258–268. https://doi.org/10.1093/sw/56.3.258 Khamisa N, Peltzer K, Ilic D, Oldenburg B (2016) Work related stress, burnout, job satisfaction and general health of nurses: A follow-up study. Int J Nurs Pract 22(6):538–545. https://doi.org/10.1111/ijn.12455 Salvagioni DAJ, Melanda FN, Mesas AE, González AD, Gabani FL, de Andrade SM (2017) Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS One 12(10):e0185781. https://doi.org/10.1371/journal.pone.0185781 Chompu-Inwai R, Yajom K (2010) Impact of work-rest period on mental fatigue in inspection task with microscope: Case study of hard disk drive component manufacturing company. In: Proceedings of World Congress on Engineering, London, UK. International Association of Engineers vol 2182, pp 1933–1937 Widyanti A, Larutama W (2016) The relation between performance of lean manufacturing and employee' mental workload. Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE, pp 252–256. https://doi.org/10.1109/IEEM.2016.7797875 Puspawardhani EH, Suryoputro MR, Sari AD, Kurnia RD, Purnomo H (2016) Mental workload analysis using NASA-TLX method between various level of work in plastic injection division of manufacturing company. In: Arezes P (ed) Advances in safety management and human factors. Springer, Cham, pp 311–319. https://doi.org/10.1007/978-3-319-41929-9_29 Lindblom J, Gündert J (2017) Managing mediated interruptions in manufacturing: Selected strategies used for coping with cognitive load. Proceedings of Advances in neuroergonomics and cognitive engineering. Springer, Cham, pp 389–403. https://doi.org/10.1007/978-3-319-41691-5_33 Thorvald P, Lindblom J, Andreasson R (2017) CLAM–a method for cognitive load assessment in manufacturing. Proceedings of Advances in Manufacturing Technology XXXI, pp 114–119 Thorvald P, Lindblom J, Andreasson R (2019) On the development of a method for cognitive load assessment in manufacturing. Rob Comput Integr Manuf 59:252–266. https://doi.org/10.1016/j.rcim.2019.04.012 Jiao J, Zhou F, Gebraeel NZ, Duffy V (2020) Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. Int J Prod Res 58(16):5089–5111. https://doi.org/10.1080/00207543.2020.1722324 Papetti A, Gregori F, Pandolfi M, Peruzzini M, Germani M (2020) A method to improve workers’ well-being toward human-centered connected factories. Journal of Computational Design and Engineering 7(5):630–643. https://doi.org/10.1093/jcde/qwaa047 D’Addona DM, Bracco F, Bettoni A, Nishino N, Carpanzano E, Bruzzone AA (2018) Adaptive automation and human factors in manufacturing: An experimental assessment for a cognitive approach. CIRP Ann 67(1):455–458.;https://doi.org/10.1016/j.cirp.2018.04.123 Bommer SC, Fendley M (2018) A theoretical framework for evaluating mental workload resources in human systems design for manufacturing operations. Int J Ind Ergon 63:7–17. https://doi.org/10.1016/j.ergon.2016.10.007 Nam CS, Nijholt A, Lotte F (eds) (2018) Brain–computer interfaces handbook: Technological and theoretical advances. CRC Press. https://doi.org/10.1201/9781351231954 Chaudhary U, Birbaumer N, Curado MR (2015) Brain-machine interface (BMI) in paralysis. Ann Phys Rehabil Med 58:9–13. https://doi.org/10.1016/j.rehab.2014.11.002 Millán JDR, Rupp R, Mueller-Putz G, Murray-Smith R, Giugliemma C, Tangermann M et al (2010) Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front Neurosci 4:161. https://doi.org/10.3389/fnins.2010.00161 Alimardani M, Hiraki K (2020) Passive brain-computer interfaces for enhanced human-robot interaction. Frontiers in Robotics and AI 7:125. https://doi.org/10.3389/frobt Musk E (2019) An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 21(10):e16194. https://doi.org/10.2196/16194 Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13(6):696–706. https://doi.org/10.1016/j.conb.2003.11.001 Theodore WH, Fisher RS (2004) Brain stimulation for epilepsy. Lancet Neurol 3(2):111–118. https://doi.org/10.1007/978-3-211-33081-4_29 Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660. https://doi.org/10.1016/j.neuron.2005.02.014 Llanos F, McHaney JR, Schuerman WL et al (2020) Non-invasive peripheral nerve stimulation selectively enhances speech category learning in adults. NPJ Science of Learning 5:12. https://doi.org/10.1038/s41539-020-0070-0 Schommartz I, Dix A, Passow S, Li SC (2021) Functional effects of bilateral dorsolateral prefrontal cortex modulation during sequential decision-making: A functional near-infrared spectroscopy study with offline transcranial direct current stimulation. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2020.605190 Steinert S, Friedrich O (2020) Wired emotions: Ethical issues of affective brain–computer interfaces. Sci Eng Ethics 26:351–367. https://doi.org/10.1007/s11948-019-00087-2 Lavazza A (2019) Transcranial electrical stimulation for human enhancement and the risk of inequality: Prohibition or compensation? Bioethics 33:122–131. https://doi.org/10.1111/bioe.12504 Burwell S, Sample M, Racine E (2017) Ethical aspects of brain computer interfaces: A scoping review. BMC Med Ethics 18:60. https://doi.org/10.1186/s12910-017-0220-y