Performance improvement of a 4 K GM/magnetic hybrid refrigerator with a new magnetic regenerator

Applied Thermal Engineering - Tập 226 - Trang 120272 - 2023
Wenshuai Zheng1, Jun Shen1,2,3,4, Zhenxing Li1,4, Xinqiang Gao4, Ke Li2,3, Hongmei Huang2,3, Peng Hai4, Zhaojun Mo4, Wei Dai2,3
1Beijing Institute of Technology, Beijing, 100081, China
2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, China

Tài liệu tham khảo

Gifford, 1960, A new low-temperature gas expansion cycle[C], Adv. Cryog. Eng., 368 Ackermann, 2002, Advanced cryocooler cooling for MRI systems, 857 Radebaugh, 2004, Refrigeration for superconductors[J], Proc. IEEE, 92, 1719, 10.1109/JPROC.2004.833678 Kang, 2005, Sub-cooled nitrogen cryogenic cooling system for superconducting fault current limiter by using GM-cryocooler[J], Cryogenics, 45, 65, 10.1016/j.cryogenics.2004.07.007 Radebaugh, 2009, Cryocoolers: the state of the art and recent developments[J], J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/16/164219 Onishi, 1996, Development of a 1.5W-class 4K gifford-mcmahon cryocooler[J], Teion Kogaku (J. Cryogen. Supercond. Soc. Japan), 31, 162, 10.2221/jcsj.31.162 Li, 1996, Influence of valve open timing and interval on performance of 4K gifford-mcmahon cycle cryocooler, 1601 Xu, 2015, Development of compact 2K GM cryocoolers[J], Phys. Proc., 67, 491, 10.1016/j.phpro.2015.06.064 Wang, 2017, Performance improvement of a large capacity GM cryocooler[J], IOP Conf. Ser.: Mater. Sci. Eng., 278 Nishio, 2006, Specific heat and thermal conductivity of HoN and ErN at cryogenic temperatures[J], J. Appl. Phys., 99, 405, 10.1063/1.2158689 Numazawa, 2003, A new ceramic magnetic regenerator material for 4 K cryocoolers, 473 Masuyama, 2011, Characteristics of a 4K Gifford–McMahon cryocooler using the Gd2O2S regenerator material[J], Cryogenics, 51, 337, 10.1016/j.cryogenics.2010.06.008 Masuyama, 2012, Attractive performance of a Gifford–McMahon cryocooler by co-axial layout of regenerator materials[J], Cryogenics, 52, 695, 10.1016/j.cryogenics.2012.04.018 Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models[J], Annu. Rev. Mat. Res., 42, 305, 10.1146/annurev-matsci-062910-100356 Yu, 2003, Review on research of room temperature magnetic refrigeration[J], Int. J. Refrig, 26, 622, 10.1016/S0140-7007(03)00048-3 Tishin, 2003, The magnetocaloric effect and its applications[J], Mater. Today, 6, 51, 10.1016/S1369-7021(03)01134-9 Warburg, 1881, Magnetische untersuchungen[J], Ann. Phys., 249, 141, 10.1002/andp.18812490510 Kitanovski, 2015, Magnetocaloric energy conversion: from theory to applications[M], Springer, 1 Giauque W F, Macdougall D P. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3·8H2O[J]. Physical Review, 1933, 43 (9): 768-768. Zhang, 2017, A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator[J], Sci. Rep., 7, 13962, 10.1038/s41598-017-14406-9 Plaznik, 2013, Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator[J], Appl. Therm. Eng., 59, 52, 10.1016/j.applthermaleng.2013.05.019 Jeong, 1994 Nellis, 1998 Yayama, 2000, Hybrid cryogenic refrigerator: combination of Brayton magnetic-cooling and Gifford-McMahon gas-cooling system[J], Jpn. J. Appl. Phys., 39, 4220, 10.1143/JJAP.39.4220 Kim, 2013, Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77K and 20K[J], Cryogenics, 57, 113, 10.1016/j.cryogenics.2013.06.002 Shen, 2019, Experimental research on a 4 K hybrid refrigerator combining GM gas refrigeration effect with magnetic refrigeration effect[J], Cryogenics, 99, 99, 10.1016/j.cryogenics.2019.03.003 Li, 2021, Numerical simulation of a low temperature hybrid refrigerator combining GM gas expansion refrigeration with magnetic refrigeration[J], Cryogenics, 113, 10.1016/j.cryogenics.2020.103235 Guo, 2020, Research on numerical optimization and application of an active magnetic regenerator[D], University of Chinese Academy of Sciences Mo, 2013, Low-field induced giant magnetocaloric effect in TmCuAl compound[J], Appl. Phys. Lett., 102, 10.1063/1.4804576 Mo, 2014, Evolution of magnetic properties and magnetocaloric effect in TmNi1-xCuxAl (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) compounds[J], J. Appl. Phys., 115, 10.1063/1.4861580 Mo, 2015, Observation of giant magnetocaloric effect in EuTiO3[J], Mater. Lett., 158, 282, 10.1016/j.matlet.2015.06.040 Mo, 2017, Effects of Sr-doping on the giant magnetocaloric effect of EuTiO3[J], Ceram. Int., 43, 2083, 10.1016/j.ceramint.2016.10.184 Mo, 2018, Effects of Mn-doping on the giant magnetocaloric effect of EuTiO3 compound[J], J. Magn. Magn. Mater., 456, 31, 10.1016/j.jmmm.2018.02.012 Lee, 2002, Permanent magnet array for the magnetic refrigerator[J], J. Appl. Phys., 91, 8894, 10.1063/1.1451906 Tura, 2011, Permanent magnet magnetic refrigerator design and experimental characterization[J], Int. J. Refrig., 34, 628, 10.1016/j.ijrefrig.2010.12.009 Wang, 2017, Performance improvement of a large capacity GM cryocooler[C] Li, 2019, Assessment of three different gadolinium-based regenerators in a rotary-type magnetic refrigerator[J], Appl. Therm. Eng., 153, 159, 10.1016/j.applthermaleng.2019.02.100 Ikeya, 2003, Improvement of 4K GM cooling performance with a new regenerator material, 403