Performance improvement of a 4 K GM/magnetic hybrid refrigerator with a new magnetic regenerator
Tài liệu tham khảo
Gifford, 1960, A new low-temperature gas expansion cycle[C], Adv. Cryog. Eng., 368
Ackermann, 2002, Advanced cryocooler cooling for MRI systems, 857
Radebaugh, 2004, Refrigeration for superconductors[J], Proc. IEEE, 92, 1719, 10.1109/JPROC.2004.833678
Kang, 2005, Sub-cooled nitrogen cryogenic cooling system for superconducting fault current limiter by using GM-cryocooler[J], Cryogenics, 45, 65, 10.1016/j.cryogenics.2004.07.007
Radebaugh, 2009, Cryocoolers: the state of the art and recent developments[J], J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/16/164219
Onishi, 1996, Development of a 1.5W-class 4K gifford-mcmahon cryocooler[J], Teion Kogaku (J. Cryogen. Supercond. Soc. Japan), 31, 162, 10.2221/jcsj.31.162
Li, 1996, Influence of valve open timing and interval on performance of 4K gifford-mcmahon cycle cryocooler, 1601
Xu, 2015, Development of compact 2K GM cryocoolers[J], Phys. Proc., 67, 491, 10.1016/j.phpro.2015.06.064
Wang, 2017, Performance improvement of a large capacity GM cryocooler[J], IOP Conf. Ser.: Mater. Sci. Eng., 278
Nishio, 2006, Specific heat and thermal conductivity of HoN and ErN at cryogenic temperatures[J], J. Appl. Phys., 99, 405, 10.1063/1.2158689
Numazawa, 2003, A new ceramic magnetic regenerator material for 4 K cryocoolers, 473
Masuyama, 2011, Characteristics of a 4K Gifford–McMahon cryocooler using the Gd2O2S regenerator material[J], Cryogenics, 51, 337, 10.1016/j.cryogenics.2010.06.008
Masuyama, 2012, Attractive performance of a Gifford–McMahon cryocooler by co-axial layout of regenerator materials[J], Cryogenics, 52, 695, 10.1016/j.cryogenics.2012.04.018
Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models[J], Annu. Rev. Mat. Res., 42, 305, 10.1146/annurev-matsci-062910-100356
Yu, 2003, Review on research of room temperature magnetic refrigeration[J], Int. J. Refrig, 26, 622, 10.1016/S0140-7007(03)00048-3
Tishin, 2003, The magnetocaloric effect and its applications[J], Mater. Today, 6, 51, 10.1016/S1369-7021(03)01134-9
Warburg, 1881, Magnetische untersuchungen[J], Ann. Phys., 249, 141, 10.1002/andp.18812490510
Kitanovski, 2015, Magnetocaloric energy conversion: from theory to applications[M], Springer, 1
Giauque W F, Macdougall D P. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3·8H2O[J]. Physical Review, 1933, 43 (9): 768-768.
Zhang, 2017, A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator[J], Sci. Rep., 7, 13962, 10.1038/s41598-017-14406-9
Plaznik, 2013, Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator[J], Appl. Therm. Eng., 59, 52, 10.1016/j.applthermaleng.2013.05.019
Jeong, 1994
Nellis, 1998
Yayama, 2000, Hybrid cryogenic refrigerator: combination of Brayton magnetic-cooling and Gifford-McMahon gas-cooling system[J], Jpn. J. Appl. Phys., 39, 4220, 10.1143/JJAP.39.4220
Kim, 2013, Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77K and 20K[J], Cryogenics, 57, 113, 10.1016/j.cryogenics.2013.06.002
Shen, 2019, Experimental research on a 4 K hybrid refrigerator combining GM gas refrigeration effect with magnetic refrigeration effect[J], Cryogenics, 99, 99, 10.1016/j.cryogenics.2019.03.003
Li, 2021, Numerical simulation of a low temperature hybrid refrigerator combining GM gas expansion refrigeration with magnetic refrigeration[J], Cryogenics, 113, 10.1016/j.cryogenics.2020.103235
Guo, 2020, Research on numerical optimization and application of an active magnetic regenerator[D], University of Chinese Academy of Sciences
Mo, 2013, Low-field induced giant magnetocaloric effect in TmCuAl compound[J], Appl. Phys. Lett., 102, 10.1063/1.4804576
Mo, 2014, Evolution of magnetic properties and magnetocaloric effect in TmNi1-xCuxAl (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) compounds[J], J. Appl. Phys., 115, 10.1063/1.4861580
Mo, 2015, Observation of giant magnetocaloric effect in EuTiO3[J], Mater. Lett., 158, 282, 10.1016/j.matlet.2015.06.040
Mo, 2017, Effects of Sr-doping on the giant magnetocaloric effect of EuTiO3[J], Ceram. Int., 43, 2083, 10.1016/j.ceramint.2016.10.184
Mo, 2018, Effects of Mn-doping on the giant magnetocaloric effect of EuTiO3 compound[J], J. Magn. Magn. Mater., 456, 31, 10.1016/j.jmmm.2018.02.012
Lee, 2002, Permanent magnet array for the magnetic refrigerator[J], J. Appl. Phys., 91, 8894, 10.1063/1.1451906
Tura, 2011, Permanent magnet magnetic refrigerator design and experimental characterization[J], Int. J. Refrig., 34, 628, 10.1016/j.ijrefrig.2010.12.009
Wang, 2017, Performance improvement of a large capacity GM cryocooler[C]
Li, 2019, Assessment of three different gadolinium-based regenerators in a rotary-type magnetic refrigerator[J], Appl. Therm. Eng., 153, 159, 10.1016/j.applthermaleng.2019.02.100
Ikeya, 2003, Improvement of 4K GM cooling performance with a new regenerator material, 403