Performance evaluation of hydrogen permeation through pd/cu membrane at different plasma system conditions

South African Journal of Chemical Engineering - Tập 35 - Trang 118-125 - 2021
Mostafa El-Shafie1, Shinji Kambra1, Yukio Hayakawa1
1Gifu University, Environmental and Renewable Energy Systems Division, Graduate School of Engineering, 1-1 Yanagido, Gifu, 501-1193, Japan

Tài liệu tham khảo

Rosen, 1998, Comparative efficiency assessment for a range of hydrogen production processes, Int. J. Hydrogen Energy, 23, 631, 10.1016/S0360-3199(97)00080-3 Barelli, 2008, Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review, Energy, 33, 554, 10.1016/j.energy.2007.10.018 Shiga, 1998, Large scale hydrogen production from biogas, Int. J. Hydrogen Energy, 23, 631, 10.1016/S0360-3199(97)00074-8 Holladay, 2009, An overview of hydrogen production technologies, Catal, Today, 139, 244, 10.1016/j.cattod.2008.08.039 Mckinley, 1967, Metal alloy for hydrogen separation and purification,US, Patent, 3, 845 El-Shafie, 2019, Hydrogen Production Technologies Overview, Journal of Power and Energy Engineering, 7, 107, 10.4236/jpee.2019.71007 El-Shafie, 2019, Preliminary results of hydrogen production from water vapor decomposition using DBD plasma in a PMCR reactor, Int. J. Hydrogen Energy, 44, 20239, 10.1016/j.ijhydene.2019.05.199 Hafeez, 2020, Optimization on cleaner intensification of ozone production using Artificial Neural Network and Response Surface Methodology: parametric and comparative study, J Clean Prod, 252, 10.1016/j.jclepro.2019.119833 Wang, 2013, Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor, Chemical Engineering J, 234, 354, 10.1016/j.cej.2013.08.052 El-Shafie, 2020, One-dimensional simulation of hydrogen production kinetic models by water vapor plasmolysis in a DBD plate reactor, J Theor Appl Phys, 14, 181, 10.1007/s40094-020-00376-3 Ghenciu, 2002, Review of fuel processing catalysts for hydrogen production in PEM fuel cells systems, Curr. Opin. Solid State Mater. Sci., 6, 389, 10.1016/S1359-0286(02)00108-0 Kirubakaran, 2009, A review on fuel cell technologies and power electronic interface, Renew. Sust. Energ. Rev., 13, 2430, 10.1016/j.rser.2009.04.004 van Ruijven, 2007, The potential role of hydrogen in energy systems with and without climate policy, Int. J. Hydrogen Energy, 32, 1655, 10.1016/j.ijhydene.2006.08.036 Nenoff, 2006, Membranes for hydrogen purification: an important step toward a hydrogen-based economy, MRS Bull, 31, 735, 10.1557/mrs2006.186 Mulder, 2000 Pan, 2005, Catal, Today, 104, 225, 10.1016/j.cattod.2005.03.049 Andrew, 1991, Hydrogen permeation through copper coated palladium, J. Appl. Phys., 70, 3600, 10.1063/1.349256 Kulprathipanja, 2005, Membr. Sci., 254, 49, 10.1016/j.memsci.2004.11.031 Kamakoti, 2005, S. Science, 307, 569 D.J. Edlund, 1996. A membrane reactor for H2S decomposition, DOE/ER/81419-97/C0749, Contract DE-FG03-92ER81419. Nam, 2001, Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier, J. Membr. Sci., 192, 177, 10.1016/S0376-7388(01)00499-9 21 D.J. Edlund. A catalytic membrane reactor for facilitating the water gas-shift reaction at high temperatures, phase II, Final Report to the US DOE on Grant DE-FG03-91ER81229 Bend Research, 1995. Morreale, 2003, The permeability of hydrogen in bulk palladium at elevated temperatures and pressures, J. Membr. Sci., 212, 87, 10.1016/S0376-7388(02)00456-8 Zetkin, 1992, Diffusion and penetrability of deuterium in the alloy Pd–53 at.% Cu, Sov. Phys. Solid State, 34, 83 Henson, 1958, 612 Roa, 2002, The influence of alloy composition on the H2 flux of composite Pd–Cu membranes, Desalination, 147, 411, 10.1016/S0011-9164(02)00636-7 Völkl, 1978, Hydrogen in Metals–I, 28 Howard, 2004, Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures, J. Membr. Sci., 241, 207, 10.1016/j.memsci.2004.04.031 Kamakoti, 2003, A comparison of hydrogen diffusivities in Pd and Cu Pd alloys using density functional theory, J. Membr. Sci., 225, 145, 10.1016/j.memsci.2003.07.008 Armenta, 2019, Thermodynamic and catalytic properties of Cu- and Pd- oxides over mixed geceAl2O3 for methanol dehydration toward dimethyl ether, Int. J. Hydrogen Energy, 44, 7276, 10.1016/j.ijhydene.2019.01.243 Liua, 2004, Effects of DBD plasma operating parameters on the polymer surface modification, Surf Coat Technol, 185, 311, 10.1016/j.surfcoat.2004.01.024 Borcia, 2003, Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form, Plasma Sources Sci. Technol., 12, 335, 10.1088/0963-0252/12/3/306 Okazaki, 2002, Ultrashort pulsed barrier discharges and Applications, Pure Appl. Chem., 74, 447, 10.1351/pac200274030447 Sieverts, 1910, Solubility of Gases in Metals and Alloys, Berichte der Deutschen Chemischen Gesellschaft, 43, 893, 10.1002/cber.191004301152 36 Pigarov, Collisional Radiative Kinetics of Molecular Assisted Recombination in Edge Plasmas Phys. Scr., T T96, 16 ~2002. Anicich, 1983, Int. J. Mass Spectrom, Ion Processes, 55 Hollmanna, 2002, Measurement and modeling of molecular ion concentrations in a hydrogen reflex-arc discharge, Phys. Plasmas., 9, 4330, 10.1063/1.1503070 Bogaerts, 2002, Spectrochim, Acta Part B, 57, 609, 10.1016/S0584-8547(01)00406-2 Pomerantz, 2009, Effect of H2S on the performance and long-term stability of Pd/Cu membranes, Ind. Eng. Chem. Res., 48, 4030, 10.1021/ie801947a Morreale, 2004, Effect of hydrogen-sulfide on the hydrogen permeance of palladium–copper alloys at elevated temperatures, J. Membr. Sci., 241, 219, 10.1016/j.memsci.2004.04.033 Hammer, 2003, Plasma catalytic hybrid reforming of methane, ACS Symp. Ser., 852, 292, 10.1021/bk-2003-0852.ch019 Nozaki, 2006, Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/_-Al2O3 bed reactor: thermal and nonthermal effect of nonequilibrium plasma, Energy Fuel, 20, 339, 10.1021/ef050141s El-Shafie, 2019, A comparison between GDP and PDP experiments of hydrogen permeation through 15μm Pd60-Cu40% membrane thickness in a micro channel plate type reactor, Fusion Engineering and Design, 149, 111320, 10.1016/j.fusengdes.2019.111320 El-Shafie, 2019, Experimental analysis of plasma and heating effect on H2 permeation behavior through Pd-Cu40% membranes in 1mm gap length plate reactor, Int. J. Hydrogen Energy