Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá hiệu suất phản ứng điện oxy hóa borohydride với các xúc tác hợp kim ba thành phần Au–Ni–Cu/C
Tóm tắt
Các hạt nano Au–Ni–Cu, Au–Ni, Au–Cu và Au được gắn carbon được tổng hợp bằng phương pháp khử polyol. Các xúc tác hạt nano đã được chế tạo được sử dụng làm xúc tác điện cực anode trong các tế bào nhiên liệu borohydride–hydrogen peroxide trực tiếp. Tính chất vật lý của các xúc tác điện hóa đã được nghiên cứu bằng phương pháp nhiễu xạ tia X (XRD) và kính hiển vi điện tử truyền qua (TEM). Phân tích XRD và TEM cho thấy kích thước trung bình của các hạt khoảng 10–20 nm. Phương pháp vòng voltammetry, chronoamperometry và phổ kế điện hóa điện trở được sử dụng để phân tích phản ứng oxy hóa borohydride (BOR) trên các xúc tác Au/C, Au–Cu/C, Au–Ni/C và Au–Ni–Cu/C. Kết quả cho thấy hoạt tính xúc tác cho BOR giảm theo thứ tự Au2–Ni1–Cu1/C > Au1.5–Ni1–Cu1/C > Au1–Ni1/C > Au1–Cu1/C > Au/C. Các thử nghiệm tế bào nhiên liệu borohydride trực tiếp (DBFC) cũng xác nhận rằng xúc tác anode Au2–Ni1–Cu1/C cho hiệu suất tốt hơn so với các xúc tác anode Au–Cu/C, Au–Ni/C và Au/C. Do đó, xúc tác ba thành phần Au2–Ni1–Cu1/C có thể là một xúc tác anode tiềm năng cho các tế bào nhiên liệu DBFC.
Từ khóa
#borohydride #xúc tác #tế bào nhiên liệu #Au–Ni–Cu #hiệu suấtTài liệu tham khảo
Celik C, Boyaci San FG, Sarac HI (2008) Effects of operation conditions on direct borohydride fuel cell performance. J Power Sources 185:197–201
Celik C, Boyaci San FG, Sarac HI (2010) Influences of sodium borohydride concentration on direct borohydride fuel cell performance. J Power Sources 195:2599–2603
Liu X, Yi L, Wang X, Su J, Song Y, Liu J (2012) Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrog Energy 37:17984–17991
Merino-Jiménez I, Ponce de León C, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357
Chatenet M, Micoud F, Roche I, Chainet E (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: part I. BH4 –electro-oxidation on Au and Ag catalysts. Electrochim Acta 51:5459–5467
Demirci UB (2007) Direct borohydride fuel cell: main issues met by the membrane-electrodes-assembly and potential solutions. J Power Sources 172:676–687
Finkelstein DA, Letcher CD, Jones DJ, Sandberg LM, Watts DJ, Abruña HD (2013) Self-poisoning during BH4 –oxidation at Pt and Au, and in situ poison removal procedures for BH4 – fuel cells. J Phys Chem C 117:1571–1581
Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49:965–978
Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151:A1039–A1043
Olu PY, Gilles B, Job N, Chatenet M (2004) Influence of the surface morphology of smooth platinum electrodes for the sodium borohydride oxidation reaction. Electrochem Commun 43:47–50
Geng X, Zhang H, Ye W, Ma Y, Zhong H (2008) Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J Power Sources 185:627–632
Liu BH, Li ZP, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49:3097–3105
Santos D, Sequeira C (2010) Zinc anode for direct borohydride fuel cells. J Electrochim Soc 157:B13-19
Wang K, Lu J, Zhuang L (2007) A current-decomposition study of the borohydride oxidation reaction at Ni electrodes. J Phys Chem C 111:7456–7462
Choudhury N, Raman R, Sampath S, Shukla A (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143:1–8
Liu BH, Suda S (2008) Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J Alloys Compd 454:280–285
Wang G, Wang X, Miao R, Cao D, Sun K (2010) Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH4 oxidation. Int J Hydrog Energy 35:1227–1231
Wang L, Ma C, Mao X (2005) LmNi4.78 Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells. J Alloys Compd 397:313–316
Wang Y, Xia Y (2006) A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochem Commun 8:1775–1778
Concha BM, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media: part II. Carbon-supported nanoparticles. Electrochim Acta 54:6130–6139
Duan DH, You X, Liang J, Liu W, Wang SB YF (2015) Carbon supported Cu–Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochim Acta 176:1126–1135
Duan DH, Liu HH, Wang Q, Wang YF, Liu SB (2016) Kinetics of sodium borohydride direct oxidation on carbon supported Cu–Ag bimetallic nanocatalysts. Electrochim Acta 198:212–219
Geng XY, Zhang HM, Ma YW, Zhong HX (2010) Borohydride electrochemical oxidation on carbon-supported Pt-modified Au nanoparticles. J Power Sources 195:1583–1588
Duan DH, Liu HH, You X, Wei HK, Liu SB (2015) Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. J Power Sources 293:292–300
Liu BH, Yang JQ, Li ZP (2009) Concentration ratio of [OH–]/[BH4 –]: A controlling factor for the fuel efficiency of borohydride electro-oxidation. Int J Hydrogen Energy 34:9436–9443
Ponce-de-Leon C, Bavykin DV, Walsh FC (2006) The oxidation of borohydride ion at titanate nanotube supported gold electrodes. Electrochem Commun 8:1655–1660
Pei F, Wang Y, Wang XY, He PY, Chen QQ, Wang XY (2010) Performance of supported Au–Co alloy as the anode catalyst of direct borohydride–hydrogen peroxide fuel cell. Int J Hydrog Energy 35:8136–8142
Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Sources 158:36–44
Mohammad Zhiani I Mohammadi (2016) Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni–Co/C anode catalyst. Fuel 166:517–525
Li S, Wang L, Chu J, Zhu HY, Chen YZ, Liu YN (2016) Investigation of Au@Co–B nanoparticles as anode catalyst for direct borohydride fuel cells. Int J Hydrog Energy 41:8583–8588
Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ (2015) The effective carbon supported core-shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrog Energy 40:488–500
Wei JL, Wang XY, Wang Y, Chen QQ, Pei F, Wang YS (2009) Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int J Hydrog Energy 34:3360–3366
Mirkin MV, Yang H, Bard AJ (1992) Borohydride oxidation at a gold electrode. J Electrochem Soc 139:2212–2217
Yi LH, Song YF, Xue L, Wang XY, Zou GS, He PY, Wei Yi (2011) High activity of Au–Cu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. Int J Hydrog Energy 36:15775–15782
Hitz C, Lasia A (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes. J Electroanal Chem 500:213–222
Lasia A (1995) Impedance of porous electrodes. J Electroanal Chem 397:27–33
Kubisztal J, Budniok A, Lasia A (2007) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrog Energy 32:1211–1218
Hosseini MG, Abdolmaleki M (2013) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrog Energy 38:5449–5456
Chen L, Lasia A (1992) Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J Electrochem Soc 139:3214–3219
Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734
Hosseini MG, Abdolmaleki M, Nasirpouri F (2013) Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim Acta 114:215–222
Wang K, Lu J, Zhuang L (2005) Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem 585:191–196
Denault G, Mirkin MV, Bard AJ (1991) Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. J Electroanal Chem 308:27–38
He P, Wang Y, Wang XY, Pei F, Wang H, Liu L, Yi LH (2011) Investigation of carbon supported Au-Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. J Power Sources 196:1042–1047
He P, Wang X, Fu P, Wang H, Yi L (2008) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydro Energy 36:8857–8863
León CPD, Walsh FC, Patrissi CJ, Medeiros MG, Bessette RR, Reeve RW (2008) A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode. Electrochem Commun 10:1610–1613
Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598
