Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá hiệu suất của chất thải nông nghiệp (tro bã mía) trong việc loại bỏ nước thải nhuộm MB dưới điều kiện môi trường UV và tối: Một phương pháp tiết kiệm chi phí
Tóm tắt
Công trình nghiên cứu hiện tại trình bày một giải pháp tương đối đơn giản, hiệu quả về chi phí và thân thiện với môi trường trong việc loại bỏ nước thải nhuộm. Nghiên cứu cho thấy việc xử lý nước thải nhuộm MB bằng cách sử dụng lượng SBA khác nhau. Hiệu suất của các lượng SBA trong dung dịch nhuộm MB được đánh giá thông qua giá trị hấp thụ của dung dịch trong các điều kiện tối và UV tại các khoảng thời gian khác nhau từ 0.5 đến 120 giờ. Kết quả thu được cho thấy sau 6 giờ tiếp xúc giữa nhuộm MB (5 ppm) và SBA (20 mg), hiệu quả loại bỏ của SBA trong môi trường tối được xác định là 44.6% so với 55.2% trong môi trường UV. Dữ liệu cho thấy hiệu quả loại bỏ cao hơn của các mẫu nhuộm chịu UV so với các mẫu được giữ trong bóng tối. Hơn nữa, nồng độ phẩm nhuộm giảm xuống 2.7 mg/L từ nồng độ ban đầu (5 mg/L) sau 6 giờ thêm 20 mg SBA, trong khi nó giảm xuống 2 mg/L sau khi tiếp xúc với môi trường UV. Các mô hình động học hấp thụ như giả bậc nhất và giả bậc hai đã được áp dụng để tìm ra tốc độ hấp thụ trên SBA. Tính khả thi thực tiễn của SBA như một chất loại bỏ nhuộm đã được kiểm tra bằng cách sử dụng một phẩm nhuộm màu vàng xanh không xác định. Các kết quả xác nhận việc loại bỏ phẩm nhuộm từ nước thải đến mức độ đáng kể trong khoảng 15 phút, điều này chứng minh tầm quan trọng của nó trong các ứng dụng công nghiệp. Các thí nghiệm để desorption các phân tử phẩm nhuộm từ SBA được thực hiện trong môi trường axit (0.1 M HNO3) với pH = 1. Điều này dẫn đến việc desorption phẩm nhuộm MB từ SBA vào dung dịch thông qua lực đẩy tĩnh điện. Kết quả desorption xác nhận sự phục hồi của SBA. SBA thu được ở cuối quá trình có thể tái sử dụng cho việc loại bỏ các phân tử phẩm nhuộm một lần nữa và do đó cung cấp một ưu điểm bổ sung trong ứng dụng công nghiệp quy mô lớn về hiệu quả chi phí của phương pháp.
Từ khóa
Tài liệu tham khảo
Abdul Mutalib AA, Ibrahim ML, Matmin J, Kassim MF, Mastuli MS, Taufiq-Yap YH, Shohaimi NA, Islam A, Tan YH, Kaus NH (2020) SiO2-Rich sugar cane bagasse ash catalyst for transesterification of palm oil. BioEnergy Res 13(3):986–997. https://doi.org/10.1007/s12155-020-10119-6
Alsubih M, Mallick J, Islam AR, Almesfer MK, Kahla NB, Talukdar S, Ahmed M (2022) Assessing surface water quality for irrigation purposes in some dams of asia region, saudi arabia using multi-statistical modeling approaches. Water 14(9):1439. https://doi.org/10.3390/w14091439
Aly HF, Abd-Elhamid AI (2018) Photocatalytic degradation of methylene blue dye using silica oxide nanoparticles as a catalyst. Water Environ Res 90(9):807–817. https://doi.org/10.2175/106143017X15131012187953
Asefa MT, Lelisa W (2022) Comparative study on removal efficiency of methylene blue from wastewater by using nano-scaled sugarcane bagasse ash and jema silica sand. Int J Water Wastewater Treat 8:1–8
Bulgariu L, Escudero LB, Bello OS, Iqbal M, Nisar J, Adegoke KA, Alakhras F, Kornaros M, Anastopoulos I (2019) The utilization of leaf-based adsorbents for dyes removal: a review. J Mol Liq 276:728–747. https://doi.org/10.1016/j.molliq.2018.12.001
Cheng J, Zhan C, Wu J, Cui Z, Si J, Wang Q, Peng X, Turng L (2020) Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 5:5389–5400. https://doi.org/10.1021/acsomega.9b04425
Chikri R, Elhadiri N, Benchanaa M (2020) Efficiency of sawdust as low-cost adsorbent for dyes removal. J Chem. https://doi.org/10.1155/2020/8813420
Chindaprasirt P, Rattanasak U (2020) Eco-production of silica from sugarcane bagasse ash for use as a photochromic pigment filler. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-66885-y
Duklan N, Chamoli P, Raina KK, Shukla RK (2022) Effect of UV light irradiation, pH and concentration on the dye sequestration efficiency of anionic surfactant based self-assembled aqueous mesophases. Surfaces Interfaces 28:101629. https://doi.org/10.1016/j.surfin.2021.101629
Esma S, Darama A (2021) Investigation of the removal of malachite green and copper ions by dual system using natural and biochar pea shells. Bull Biotechnol 1:46–51
Etim EU (2019) Removal of methyl blue dye from aqueous solution by adsorption unto ground nut waste. Biomed J Sci Tech Res 15(3):11365–11371. https://doi.org/10.26717/BJSTR.2019.15.002701
Fitriana S, Wijayanti A, Hadisoebroto R (2021) Utilization of coconut coir as adsorbent for dye removal in wastewater: The effect of mixing speed. Earth Environ Sci 737:012015. https://doi.org/10.1088/1755-1315/737/1/012015
Ghorbannezhad P, Shen G, Ali I (2022) Microwave-assisted hot water treatment of sugarcane bagasse for fast pyrolysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02492-3
Hashem AH, Saied E (2020) Green and eco-friendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustain Chem Pharm 18:100333. https://doi.org/10.1016/j.scp.2020.100333
Hassan A, Bhatti HN, Iqbal M, Nazir A (2021) Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye. Z Phys Chem 235(8):1077–1097. https://doi.org/10.1515/zpch-2020-1680
Holliday MC, Parsons DR, Zein SH (2022) Agricultural pea waste as a low-cost pollutant biosorbent for methylene blue removal: adsorption kinetics, isotherm, and thermodynamic studies. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02865-8
Jabeen A, Bhatti HN (2021) Adsorptive removal of reactive green 5 (RG-5) and direct yellow 50 (DY-50) from simulated wastewater by Mangifera indica seed shell and its magnetic composite: batch and column study. Environ Technol Innov 23:101685. https://doi.org/10.1016/j.eti.2021.101685
Jagadesh P, Ramachandramurthy A, Murugesan R, Karthik Prabhu T (2019) Adaptability of sugar cane bagasse ash in mortar. J Inst Eng Ser a 100:225–240. https://doi.org/10.1007/s40030-019-00359-x
Jawad AH, Saber SE, Abdulhameed AS, Reghioua A, Alothman ZA, Wilson LD (2022) Mesoporous activated carbon from mangosteen (Garcinia mangostana) peels by H3PO4 assisted microwave: Optimization, characterization, and adsorption mechanism for methylene blue dye removal. Diamond Relat Mater 129:109389. https://doi.org/10.1016/j.diamond.2022.109389
Kamaraj M, Umamaheswari P (2019) Preparation and characterization of Groundnut shell activated carbon as an efficient adsorbent for the removal of Methylene blue dye from aqueous solution with microbiostatic activity. J Mater Environ Sci 8:2019–2025
Kamran U, Bhatti HN, Noreen S, Tahir MA, Park SJ (2022) Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: kinetics, isotherms, thermodynamics, and desorption studies. Chemosphere 291:132796. https://doi.org/10.1016/j.chemosphere.2021.132796
Kimothi SP, Panwar DA, Khulbe A (2020) Creating wealth from agricultural waste. Indian Counc. Agric. Res. New Delhi
Liou TH, Lin MH (2019) Preparation of mesoporous graphene oxide/SBA-15 hybrid nanoparticles as a potential adsorbent for removal of cationic dyes. Desalin Water Treat 155:285–295. https://doi.org/10.5004/dwt.2019.24055
Liu Z, Huang X, Miao Y, Gao B, Shi Y, Zhao J, Tan SH (2022) Eggplant biomass-based porous carbon for fast and efficient dye adsorption from wastewater. Indu Crops Products 187:115510. https://doi.org/10.1016/j.indcrop.2022.115510
Ma M, Chen Y, Zhao X, Tan F, Wang Y, Cao Y (2020) Effective removal of cation dyes from aqueous solution using robust cellulose sponge. J Saudi Chem Soc 24:915–924. https://doi.org/10.1016/j.jscs.2020.09.008
Mohammed MI, Sabri AA, Taha EJ (2019) Application of wheat husk in color removal of textile wastewater. Eng Technol J 37(2):296–302
Mor S, Negi P, Ravindra K (2019) Potential of agro-waste sugarcane bagasse ash for the removal of ammoniacal nitrogen from landfill leachate. Environ Sci Pollut Res 26(24):24516–24531. https://doi.org/10.1007/s11356-019-05563-7
Mulay S, Vesmawala G, Patil Y, Gholap V (2017) Experimental investigation of sugarcane bagasse ash concrete under sodium hydroxide solution. Am J Civ Eng 5(1):1–8. https://doi.org/10.11648/j.ajce.20170501.11
Nadeem N, Zahid M, Rehan ZA, Hanif MA, Yaseen M (2022) Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite. Int J Environ Sci Technol 19(4):3045–3060. https://doi.org/10.1007/s13762-021-03255-9
Phonphuak N, Chindaprasirt P (2018) Utilization of sugarcane bagasse ash to improve properties of fired clay brick. Chiang Mai J Sci 45:1855–1862
Prastuti OP, Septiani EL, Kurniati Y (2019) Banana peel activated carbon in removal of dyes and metals ion in textile industrial waste. Mater Sci Forum 966:204–209
Ramesh BK, Pillai MV, Vanitha S, Diagu J (2020) Analysis of surface water quality for irrigation in Padmanabhapuram fort (Kanyakumari District, Tamil Nadu) India. IOP Conf Ser Mater Sci Eng 872(1):012191. https://doi.org/10.1088/1757-899X/872/1/012191
Rattanachueskul N, Dokkathin O, Dechtrirat D, Panpranot J, Watcharin W, Kaowphong S, Chuenchom L (2022) Sugarcane bagasse ash as a catalyst support for facile and highly scalable preparation of magnetic fenton catalysts for ultra-highly efficient removal of tetracycline. Catalysts 12(4):446. https://doi.org/10.3390/catal12040446
Salah N, Habib SS, Khan ZH, Kumar R, Barakat MA (2015) UV-irradiated carbon nanotubes synthesized from fly ash for adsorption of congo red dyes in aqueous solution. Desalin Water Treat 57(45):21534–21544. https://doi.org/10.1080/19443994.2015.1123192
Sikdar D, Goswami S (2021) Synthesis of activated carbon material using sawdust as precursor and its application for dye removal: batch study and optimization using response surface methodology. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01385-1
Simonescu CM, Culita DC, Tatarus A, Mocanu T, Marinescu G, Mitran RA, Atkinson I, Kuncser A, Stanica N (2022) Novel magnetic nanocomposites based on carboxyl-functionalized SBA-15 silica for effective dye adsorption from aqueous solutions. Nanomaterials 12(13):2247
Slama HB, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L (2021) Diversity of synthetic dyes from textile industries, discharge impacts, and treatment methods. Appl Sci 11(14):6255
Thanh NC, Shanmugam S, Shanmugasundaram S, AlSalhi MS, Devanesan S, Shanmuganathan R, Chi NT (2022) Comparison of Simarouba glauca seed shell carbons for enhanced direct red 12B dye adsorption: Adsorption isotherm and kinetic studies. Food Chem Toxicol 168:113326. https://doi.org/10.1016/j.fct.2022.113326
The Hindu (2022) Sugar export india producer restrict policy [WWW Document]. URL: https://www.thehindu.com/business/agri-business/sugarexportindiaproducerrestrictpolicyexplained
Vasu D, Kumar S (2020) Removal of dyes using wheat husk waste as a low-cost adsorbent. Environ Claims J 32:67–76. https://doi.org/10.1080/10406026.2019.1669908
Verma J, Bhattacharya A (2018) Analysis on synthesis of silica nanoparticles and its effect on growth of T. harzianum & rhizoctonia species. Biomed J Sci Tech Res 5:7890–7897. https://doi.org/10.26717/BJSTR.2018.10.001972
Verma RK, Dutta S (2020) Adsorptive removal of toxic dyes using chitosan and its composites. Green Mater Wastewater Treat 38:223–255. https://doi.org/10.1007/978-3-030-17724-9_10
Yao J, Wang C (2010) Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Int J Photoenergy. https://doi.org/10.1155/2010/643182
Yoke M, Yew C, Tam J (2020) Bioremediation of dyes using coconut parts via adsorption: A review. SN Appl Sci 2:1–16. https://doi.org/10.1007/s42452-020-1978-y
Yusop MF, Ahmad MA, Rosli NA, Abd Manaf ME (2021a) Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: optimization and batch studies. Arab J Chem 14(6):103122. https://doi.org/10.1016/j.arabjc.2021.103122
Yusop MF, Ahmad MA, Rosli NA, Gonawan FN, Abdullah SJ (2021b) Scavenging malachite green dye from aqueous solution using durian peel-based activated carbon. Malays J Fundam Appl Sci 17(1):95–103. https://doi.org/10.11113/mjfas.v17n1.2173
Yusop MF, Aziz A, Ahmad MA (2022) Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: optimization and batch studies. Arab J Chem 15(9):104081. https://doi.org/10.1016/j.arabjc.2022.104081
Zhang P, Liao W, Kumar A, Zhang Q, Ma H (2020) Characterization of sugarcane bagasse ash as a potential supplementary cementitious material: comparison with coal combustion fly ash. J Clean Prod 277:123834. https://doi.org/10.1016/j.jclepro.2020.123834