Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer

Sayed Rezwanul Islam Biplab1, Md. Hasan Ali1, Md. Mahabub Alam Moon1, Md. Firoz Pervez2, Md. Ferdous Rahman1,3, Jaker Hossain3
1Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur, Bangladesh
2Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
3Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alhammadi, S., Park, H., Kim, W.K.: Optimization of intrinsic ZnO thickness in Cu(In, Ga)Se2-based thin film solar cells. Materials (2019). https://doi.org/10.3390/ma12091365

Bouich, A., Hartiti, B., Ullah, S., Ullah, H., Touhami, M.E., Santos, D.M.F., Mari, B.: Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1–x)Se2-based solar cells. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.02.067

Moon, M.M.A., Rahman, M.F., Hossain, J., Ismail, A.B.M.: Comparative study of the second generation a-Si:H, CdTe, and CIGS thin-film solar cells. Adv. Mater. Res. (2019). https://doi.org/10.4028/www.scientific.net/AMR.1154.102

Candelise, C., Spiers, J.F., Gross, R.J.K.: Materials availability for thin film (TF) PV technologies development: a real concern? Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2011.06.012

Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.02.099

Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.L.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu(In,Ga)Se2 based solar cells performances. Opto-Electron. Rev. (2019). https://doi.org/10.1016/j.opelre.2019.02.001

Oyedele, S.O., Soucase, B.M., Aka, B.: Numerical simulation and performance optimization of Cu(In,Ga)Se2 solar cells. IOSR J. Appl. Phys. (2016). https://doi.org/10.9790/4861-0804040111

Ando, Y., Ishizuka, S., Wang, S., Chen, J., Islam, M.M., Shibata, H., Akimoto, K., Sakurai, T.: Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se2-based solar cells. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.08RC08

Ramanathan, K., Contreras, M.A., Perkins, C.L., Asher, S., Hasoon, F.S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., Duda, A.: Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt. Res. Appl. (2003). https://doi.org/10.1002/pip.494

Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. (2008). https://doi.org/10.1002/pip.822

Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 53). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3102

Daoudia, A.K., Hassouani, Y.E., Benami, A.: Investigation of the effect of thickness, band gap and temperature on the efficiency of CIGS solar cells through SCAPS-1D. Int. J. Eng. Tech. Res. (IJETR) 6, 71–75 (2016)

Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Proc. (2015). https://doi.org/10.1016/j.egypro.2015.07.809

Robin, M.S.R., Mansoor, M., Rasmi, M., Sarkar, M.S.Z., Rabbi, A.S.M., Mamun, A.: Numerical modeling and analysis of ultra thin film Cu(In,Ga)Se2 solar cell using SCAPS-1D. In: International Conference on Electrical Engineering and Information and Communication Technology (iCEEiCT) (IEEE), 22–24th Sept. 2016, MIST, Dhaka, Bangladesh. https://doi.org/10.1109/CEEICT.2016.7873169

Benabbas, S., Rouabah, Z., Heriche, H., Chelali, N.: A numerical study of high efficiency ultra-thin CdS/CIGS solar cells. Afr. J. Sci. Technol. Innov. Dev. (2016). https://doi.org/10.1080/20421338.2015.1118929

Sylla, A., Touré, S., Vilcot, J.-P.: Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer. Open J. Model. Simul. (2017). https://doi.org/10.4236/ojmsi.2017.54016

AlZoubi, T., Moustafa, M.: Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS. Int. J. Smart Grid Clean Energy (2019). https://doi.org/10.12720/sgce.8.3.291-298

Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., Wada, T.: Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells (2001). https://doi.org/10.1016/S0927-0248(00)00283-X

Ahamed, E.M.K.I., Bhowmik, S., Matin, M.A., Amin, N.: Highly efficient ultra thin Cu(In,Ga)Se2 solar cell with tin Selenide BSF. In: 2017 International Conference on Electrical, Computer and Communication Engineering, February 16–18, 2017, Cox’s Bazar, Bangladesh. IEEE. https://doi.org/10.1109/ECACE.2017.7912942

Benabbas, S., Heriche, H., Rouabah, Z., Chelali, N.: Enhancing the efficiency of CIGS thin film solar cells by inserting novel back surface field (SnS) layer. In: 2014 North African Workshop on Dielectric Materials for Photovoltaic Systems, October 26–27, 2014, Algeria. IEEE. https://doi.org/10.1109/NAWDMPV.2014.6997611

Moon, M.M.A., Ali, M.H., Rahman, M.F., Kuddus, A., Hossain, J., Ismail, A.B.M.: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab49e8

Doorene, S.V.: Barium disilicide: Development of a novel, low cost and earth abundant absorber material for thin film solar cell applications. MS Thesis, Sustainable Energy Technology, Delft University of Technology, Delft, Netherlands, June 6, 2017. https://repository.tudelft.nl/islandora/object/uuid%3A177b86f2-cb70-4e74-b02b-b0ee421c7e36 (2017). Accessed 25 July 2019

Khan, M.A., Suemasu, T.: Donor and acceptor levels in impurity-doped semiconducting BaSi2 thin films for solar-cell application. Phys. Status Solidi A (2017). https://doi.org/10.1002/pssa.201700019

Deng, T., Sato, T., Xu, Z., Takabe, R., Yachi, S., Yamashita, Y., Toko, K., Suemasu, T.: p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111). Appl. Phys. Express (2018). https://doi.org/10.7567/apex.11.062301

Suemasu, T., Usami, N.: Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/50/2/023001

Kodalle, T., Choubrac, L., Arzel, L., Schlatmann, R., Barreau, N., Kaufmann, C.A.: Effects of KF and RbF post deposition treatments on the growth of the CdS buffer layer on CIGS thin films—a comparative study. Sol. Energy Mater. Sol. Cells (2019). https://doi.org/10.1016/j.solmat.2019.109997

Frisk, C., Platzer-Björkman, C., Olsson, J., Szaniawski, P., Wätjen, J.T., Fjällström, V., Salomé, P., Edoff, M.: Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models. J. Phys. D Appl. Phys. (2014). https://doi.org/10.1088/0022-3727/47/48/485104

Burgelman, M., Decock, K., Niemegeers, A.,Verschraegen, J., Degrave, S.: SCAPS Manual (version: 3.3.07). Department of Electronics and Information Systems, University of Gent, Belgium. http://scaps.elis.ugent.be (2018). Accessed 5 January 2019

Dabbabi, S., Nasr, T.B., Kamoun, T.: CIGS solar cells for space applications: numerical simulation of the effect of traps created by high-energy electron and proton irradiation on the performance of solar cells. JOM (2018). https://doi.org/10.1007/s11837-018-2748-9

Huang, J., Lee, K., Tseng, Y.: Analysis of the high conversion efficiencies ß-FeSi2 and BaSi2 n-i-p thin film solar cells. J. Nanomater. (2014). https://doi.org/10.1155/2014/238291

Gloeckler, M.: Device physics of Cu(In, Ga)Se2 thin-film solar cells. Ph.D. dissertation, Colorado State University, Fort Collins (2005)

Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. (2002). https://doi.org/10.1143/JJAP.41.L165

Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., Powalla, M.: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. (2016). https://doi.org/10.1002/pssr.201600199

Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3171

Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Bénédicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu(In, Ga)Se–ZnS. J. King Saud Univ. Sci (2018). https://doi.org/10.1016/j.jksus.2018.03.026

Yang, X., Chen, B., Chen, J., Zhang, Y., Liu, W., Sun, Y.: ZnS thin film functionalized as back surface field in Si solar cells. Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2017.08.011

Kaminski, A., Vandelle, B., Fave, A., Boyeaux, J.P., Nam, L.Q., Monna, R., Sarti, D., Laugier, A.: Aluminium BSF in silicon solar cells. Sol. Energ. Mater. Sol. Cells. (2002). https://doi.org/10.1016/S0927-0248(01)00185-4

Kuddus, A., Rahman, M.F., Ahmmed, S., Hossain, J., Ismail, A.B.M.: Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.106168

Benzetta, A.H., Abderrezek, M., Djeghlal, M.E.: Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back-surface field layer. Optik (2019). https://doi.org/10.1016/j.ijleo.2018.12.048

Sohid, S.B., Kabalan, A.: Numerical analysis of ZnTe based solar cell with Sb2Te3 back surface field layer using SCAPS-1D. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, June 10–15, 2018, USA. IEEE. https://doi.org/10.1109/pvsc.2018.8547800

Paul, D.I.: Experimental characterisation of photovoltaic modules with cells connected in different configurations to address nonuniform illumination effect. J. Renew. Energy (2019). https://doi.org/10.1155/2019/5168259

Series Resistance. https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance (2019). Accessed 15 July 2019

Omrani, M.K., Minbashi, M., Memarian, N., Kim, D.H.: Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-State Electron. (2018). https://doi.org/10.1016/j.sse.2017.12.004