Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alhammadi, S., Park, H., Kim, W.K.: Optimization of intrinsic ZnO thickness in Cu(In, Ga)Se2-based thin film solar cells. Materials (2019). https://doi.org/10.3390/ma12091365
Bouich, A., Hartiti, B., Ullah, S., Ullah, H., Touhami, M.E., Santos, D.M.F., Mari, B.: Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1–x)Se2-based solar cells. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.02.067
Moon, M.M.A., Rahman, M.F., Hossain, J., Ismail, A.B.M.: Comparative study of the second generation a-Si:H, CdTe, and CIGS thin-film solar cells. Adv. Mater. Res. (2019). https://doi.org/10.4028/www.scientific.net/AMR.1154.102
Candelise, C., Spiers, J.F., Gross, R.J.K.: Materials availability for thin film (TF) PV technologies development: a real concern? Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2011.06.012
Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.02.099
Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.L.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu(In,Ga)Se2 based solar cells performances. Opto-Electron. Rev. (2019). https://doi.org/10.1016/j.opelre.2019.02.001
Oyedele, S.O., Soucase, B.M., Aka, B.: Numerical simulation and performance optimization of Cu(In,Ga)Se2 solar cells. IOSR J. Appl. Phys. (2016). https://doi.org/10.9790/4861-0804040111
Ando, Y., Ishizuka, S., Wang, S., Chen, J., Islam, M.M., Shibata, H., Akimoto, K., Sakurai, T.: Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se2-based solar cells. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.08RC08
Ramanathan, K., Contreras, M.A., Perkins, C.L., Asher, S., Hasoon, F.S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., Duda, A.: Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt. Res. Appl. (2003). https://doi.org/10.1002/pip.494
Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. (2008). https://doi.org/10.1002/pip.822
Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 53). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3102
Daoudia, A.K., Hassouani, Y.E., Benami, A.: Investigation of the effect of thickness, band gap and temperature on the efficiency of CIGS solar cells through SCAPS-1D. Int. J. Eng. Tech. Res. (IJETR) 6, 71–75 (2016)
Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Proc. (2015). https://doi.org/10.1016/j.egypro.2015.07.809
Robin, M.S.R., Mansoor, M., Rasmi, M., Sarkar, M.S.Z., Rabbi, A.S.M., Mamun, A.: Numerical modeling and analysis of ultra thin film Cu(In,Ga)Se2 solar cell using SCAPS-1D. In: International Conference on Electrical Engineering and Information and Communication Technology (iCEEiCT) (IEEE), 22–24th Sept. 2016, MIST, Dhaka, Bangladesh. https://doi.org/10.1109/CEEICT.2016.7873169
Benabbas, S., Rouabah, Z., Heriche, H., Chelali, N.: A numerical study of high efficiency ultra-thin CdS/CIGS solar cells. Afr. J. Sci. Technol. Innov. Dev. (2016). https://doi.org/10.1080/20421338.2015.1118929
Sylla, A., Touré, S., Vilcot, J.-P.: Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer. Open J. Model. Simul. (2017). https://doi.org/10.4236/ojmsi.2017.54016
AlZoubi, T., Moustafa, M.: Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS. Int. J. Smart Grid Clean Energy (2019). https://doi.org/10.12720/sgce.8.3.291-298
Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., Wada, T.: Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells (2001). https://doi.org/10.1016/S0927-0248(00)00283-X
Ahamed, E.M.K.I., Bhowmik, S., Matin, M.A., Amin, N.: Highly efficient ultra thin Cu(In,Ga)Se2 solar cell with tin Selenide BSF. In: 2017 International Conference on Electrical, Computer and Communication Engineering, February 16–18, 2017, Cox’s Bazar, Bangladesh. IEEE. https://doi.org/10.1109/ECACE.2017.7912942
Benabbas, S., Heriche, H., Rouabah, Z., Chelali, N.: Enhancing the efficiency of CIGS thin film solar cells by inserting novel back surface field (SnS) layer. In: 2014 North African Workshop on Dielectric Materials for Photovoltaic Systems, October 26–27, 2014, Algeria. IEEE. https://doi.org/10.1109/NAWDMPV.2014.6997611
Moon, M.M.A., Ali, M.H., Rahman, M.F., Kuddus, A., Hossain, J., Ismail, A.B.M.: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab49e8
Doorene, S.V.: Barium disilicide: Development of a novel, low cost and earth abundant absorber material for thin film solar cell applications. MS Thesis, Sustainable Energy Technology, Delft University of Technology, Delft, Netherlands, June 6, 2017. https://repository.tudelft.nl/islandora/object/uuid%3A177b86f2-cb70-4e74-b02b-b0ee421c7e36 (2017). Accessed 25 July 2019
Khan, M.A., Suemasu, T.: Donor and acceptor levels in impurity-doped semiconducting BaSi2 thin films for solar-cell application. Phys. Status Solidi A (2017). https://doi.org/10.1002/pssa.201700019
Deng, T., Sato, T., Xu, Z., Takabe, R., Yachi, S., Yamashita, Y., Toko, K., Suemasu, T.: p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111). Appl. Phys. Express (2018). https://doi.org/10.7567/apex.11.062301
Suemasu, T., Usami, N.: Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/50/2/023001
Kodalle, T., Choubrac, L., Arzel, L., Schlatmann, R., Barreau, N., Kaufmann, C.A.: Effects of KF and RbF post deposition treatments on the growth of the CdS buffer layer on CIGS thin films—a comparative study. Sol. Energy Mater. Sol. Cells (2019). https://doi.org/10.1016/j.solmat.2019.109997
Frisk, C., Platzer-Björkman, C., Olsson, J., Szaniawski, P., Wätjen, J.T., Fjällström, V., Salomé, P., Edoff, M.: Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models. J. Phys. D Appl. Phys. (2014). https://doi.org/10.1088/0022-3727/47/48/485104
Burgelman, M., Decock, K., Niemegeers, A.,Verschraegen, J., Degrave, S.: SCAPS Manual (version: 3.3.07). Department of Electronics and Information Systems, University of Gent, Belgium. http://scaps.elis.ugent.be (2018). Accessed 5 January 2019
Dabbabi, S., Nasr, T.B., Kamoun, T.: CIGS solar cells for space applications: numerical simulation of the effect of traps created by high-energy electron and proton irradiation on the performance of solar cells. JOM (2018). https://doi.org/10.1007/s11837-018-2748-9
Huang, J., Lee, K., Tseng, Y.: Analysis of the high conversion efficiencies ß-FeSi2 and BaSi2 n-i-p thin film solar cells. J. Nanomater. (2014). https://doi.org/10.1155/2014/238291
Gloeckler, M.: Device physics of Cu(In, Ga)Se2 thin-film solar cells. Ph.D. dissertation, Colorado State University, Fort Collins (2005)
Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. (2002). https://doi.org/10.1143/JJAP.41.L165
Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., Powalla, M.: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. (2016). https://doi.org/10.1002/pssr.201600199
Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3171
Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Bénédicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu(In, Ga)Se–ZnS. J. King Saud Univ. Sci (2018). https://doi.org/10.1016/j.jksus.2018.03.026
Yang, X., Chen, B., Chen, J., Zhang, Y., Liu, W., Sun, Y.: ZnS thin film functionalized as back surface field in Si solar cells. Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2017.08.011
Kaminski, A., Vandelle, B., Fave, A., Boyeaux, J.P., Nam, L.Q., Monna, R., Sarti, D., Laugier, A.: Aluminium BSF in silicon solar cells. Sol. Energ. Mater. Sol. Cells. (2002). https://doi.org/10.1016/S0927-0248(01)00185-4
Kuddus, A., Rahman, M.F., Ahmmed, S., Hossain, J., Ismail, A.B.M.: Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.106168
Benzetta, A.H., Abderrezek, M., Djeghlal, M.E.: Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back-surface field layer. Optik (2019). https://doi.org/10.1016/j.ijleo.2018.12.048
Sohid, S.B., Kabalan, A.: Numerical analysis of ZnTe based solar cell with Sb2Te3 back surface field layer using SCAPS-1D. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, June 10–15, 2018, USA. IEEE. https://doi.org/10.1109/pvsc.2018.8547800
Paul, D.I.: Experimental characterisation of photovoltaic modules with cells connected in different configurations to address nonuniform illumination effect. J. Renew. Energy (2019). https://doi.org/10.1155/2019/5168259
Series Resistance. https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance (2019). Accessed 15 July 2019