Performance dependence of electrochemical capacitor on surface morphology for vertically aligned graphene nanosheets
Tóm tắt
“Vertically aligned graphene nanosheets” are a type of graphitic carbon nanostructure with an interconnected network of perpendicularly aligned graphene nanosheets. In this study, the thin films of this material are deposited on stainless steel substrates using electron cyclotron resonance–based plasma-enhanced chemical vapor deposition. The variation of the electrochemical performance of the vertically aligned graphene nanosheets with the change in surface morphology is analyzed. The samples with different surface geometries offer different values of specific capacitances. The sample with nanopores between the graphene nanosheets of largest diameter and of most open nature delivers the highest specific electrode capacitance of 0.98 mF cm−2 (11.09 F cm−3) at a current density 0.88 mA cm−2 while the corresponding value for the sample with the smallest gap between nanosheets is of 0.49 mF cm−2 (6.67 F cm−3). The results point out at a direct correlation between surface morphology and electrochemical performance of the material.
Tài liệu tham khảo
Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum Publishers, New York, USA
Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269. https://doi.org/10.1021/cr020730k
Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes-a review. J Mater 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001
Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6
Gong J, Tian Y, Yang Z, Wang Q, Hong X, Ding Q (2018) High-performance flexible all-solid-state ssymmetric supercapacitors based on vertically aligned CuSe@Co(OH)2 nanosheet arrays. J Phys Chem C 122:2002–2011. https://doi.org/10.1021/acs.jpcc.7b11125
Gong J, Li J, Yang J, Zhao S, Yang Z, Zhang K, Bao J, Pang H, Han M (2018) High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl Mater Interfaces 10:38341–38349. https://doi.org/10.1021/acsami.8b12543
Chen J, Bo Z, Lu G (2015) Vertically-oriented graphene: PECVD synthesis and applications. Springer, Switzerland. https://doi.org/10.1007/978-3-319-15302-5
Bo Z, Mao S, Han ZJ, Cen K, Chen J, Ostrikov K (2015) Emerging energy and environmental applications of vertically-oriented graphene. Chem Soc Rev 44:2108–2121. https://doi.org/10.1039/c4cs00352g
Zhang Z, Lee CS, Zhang W (2017) Vertically aligned graphene nanosheet arrays: synthesis, properties, and applications in electrochemical energy conversion and storage. Adv Energy Mater 1700678:20pp. https://doi.org/10.1002/aenm.201700678
Zhao X, Tian H, Zhu M, Tian K, Wang JJ, Kang F, Outlaw RA (2009) Carbon nanosheets as the electrode material in supercapacitors. J Power Sources 194:1208–1212. https://doi.org/10.1016/j.jpowsour.2009.06.00
Bo Z, Wen Z, Kim H, Lu G, Yu K, Chen J (2012) One-step fabrication and capacitive behaviour of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50:4379–4387. https://doi.org/10.1016/j.carbon.2012.05.014
Aradilla D, Delaunay M, Sadki S, Gerard JM, Bidan G Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high-performance on-chip micro-supercapacitors. J Mater Chem A 3(2015):19254–19262. https://doi.org/10.1039/c5ta04578a
D. Premathilake, R. A. Outlaw, S. G. Parler, S. M. Butler, J. R. Miller, Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminium. Carbon . 111 (2017) 231–237. DOI: https://doi.org/10.1016/j.carbon.2016.09.080
Miller JR, Outlaw RA, Holloway BC (2010) Graphene double layer capacitor with ac line-filtering performance. Science 329:1637–1639. https://doi.org/10.1126/science.1194372
Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra high-power performance. Electrochim Acta 56:10443–10449. https://doi.org/10.1016/j.electacta.2011.05.122
Cai M, Outlaw RA, Butler SM, Miller JR (2012) A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon N Y 50:5481–5488. https://doi.org/10.1016/j.carbon.2012.07.035
Ren G, Pan X, Bayne S, Fan Z (2014) Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam, 94–101. Carbon 71. https://doi.org/10.1016/j.carbon.2014.01.017
Cai M, Outlaw RA, Quinlan RA, Premathilake D, Butler SM, Miller JR (2014) Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 8:5873–5882. https://doi.org/10.1021/nn5009319
Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M (2018) Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage. J Power Sources 401:37–48. https://doi.org/10.1016/j.jpowsour.2018.08.071
Xiong G, Hembram KPSS, Reifenberger RG, Fisher TS (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sources 227:254–259. https://doi.org/10.1016/j.jpowsour.2012.11.040
Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS (2014) Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4:1300515 (9 pages). https://doi.org/10.1002/aenm.201300515
Chang H-C, Chang H-Y, Su W-J, Lee K-Y, Shih W-C (2012) Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth. Appl Surf Sci 258:8599–8602. https://doi.org/10.1016/j.apsusc.2012.05.057
Seo DH, Han ZJ, Kumar S, Ostrikov K (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance, 1316–1323. Adv Energy Mater 3. https://doi.org/10.1002/aenm.201300431
Q. Liao, N. Li, H. Cui, C. Wang, Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes, Journal of Material Chemistry A 1 (2013) 13715–13720. DOI: https://doi.org/10.1039/c3ta13102e
Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9:5310–5317. https://doi.org/10.1021/acsnano.5b00821
Ma B, Zhou X, Bao H, Li X, Wang G (2012) Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J Power Sources 215:36–42. https://doi.org/10.1016/j.jpowsour.2012.04.083
Ghosh M, Anand V, Rao Gowravaram M (2018) Wetting characteristics of vertically aligned graphene nanosheets. Nanotechnology 29(385703):7pp. https://doi.org/10.1088/1361-6528/aad157
Ghosh M, Venkatesh G, Mohan Rao G (2016) Surface modification of vertically aligned graphene nanosheets by microwave assisted etching for application as anode of lithium ion battery. Solid State Ionics 296:31–36. https://doi.org/10.1016/j.ssi.2016.08.017
Deenamma KV, Rao GM (2000) Electron cyclotron resonance plasma source for ion assisted deposition of thin films. Rev Sci Instrum 71. https://doi.org/10.1063/1.1150225
Thomas R, Rao KY, Rao GM (2013) Morphology and electrochemical performance of graphene nanosheet array for Li-ion thin film battery. Electrochim Acta 108:458–464. https://doi.org/10.1016/j.electacta.2013.06.109
Thomas R, Mohan Rao G (2015) Synthesis of 3-dimensional porous graphene nanosheets using electron cyclotron resonance plasma enhanced chemical vapor deposition. RSC Adv 5:84927–84935. https://doi.org/10.1039/c5ra09087c
Sykam N, Ghosh M, Rao GM (2018) Exfoliated graphite containing metal oxides for high-performance pseudocapacitor applications. J Alloys Compd 769:274–281. https://doi.org/10.1016/j.jallcom.2018.08.011
B. Kim, H. Chung, W. Kim High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes, Nanotechnology 23 (2012) 155401 (8pp). DOI:https://doi.org/10.1088/0957-4484/23/15/155401
Lin Y, Zhang H, Deng W, Zhang D, Li N, Wu Q, He C (2018) In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite. J Power Sources 384:278–286. https://doi.org/10.1016/j.jpowsour.2018.03.003
M. A. MacDonald, H.. Andreas, Method for equivalent circuit determination for electrochemical impedance spectroscopy data of protein adsorption on solid surfaces, Electrochimica Acta 129 (2014) 290–299. DOI: https://doi.org/10.1016/j.electacta.2014.02.046
Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M (2017) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano-Struct Nano-Objects 10:42–50. https://doi.org/10.1016/j.nanoso.2017.03.008
Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) NiO-CNT composite for high-performance supercapacitor electrode and oxygen evolution reaction. Electrochim Acta 283. https://doi.org/10.1016/j.electacta.2018.06.154
Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912. https://doi.org/10.1016/j.electacta.2003.09.043
Ray A, Roy A, Ghosh M, Ramos-Ramón JA, Saha S, Pal U, Bhattacharya SK, Das S (2019) Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4nanoparticles for supercapacitor application. Appl Surf Sci 463:513–552. https://doi.org/10.1016/j.apsusc.2018.08.259
Wu Y, Yang B (2002) Effects of localized electric field on the growth of carbon nanowalls. Nano Lett 2:355–359. https://doi.org/10.1021/nl015693b
Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli MH (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071. https://doi.org/10.1021/nl501039c
Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87. https://doi.org/10.1016/j.nanoen.2013.12.017
Song H, Su J, Wang C (2019) In situ subangstrom thick organic engineering enables mono-scale, ultrasmall ZnO nanocrystals for a high initial coulombic efficiency, fully reversible conversion, and cycle-stable Li-ion storage. Adv Energy Mater 9(1-8):1900426
