Performance comparison of wavelet neural network and adaptive neuro-fuzzy inference system with small data sets
Tài liệu tham khảo
Gasteiger, 1993, Neural networks in chemistry, Angew. Chem. Int. Ed., 32, 503, 10.1002/anie.199305031
Despagne, 1993, Neural networks in multivariate calibration, Analyst, 123, 157R, 10.1039/a805562i
Jalali-Heravi, 2008, Neural networks in analytical chemistry, Methods Mol. Biol., 458, 81
Khayamian, 2005, Principal component-wavelet neural networks as a new multivariate calibration method, Anal. Lett., 38, 1477, 10.1081/AL-200062265
Zhang, 1995, Wavelet neural networks for function learning, IEEE Trans. Signal Process., 43, 1485, 10.1109/78.388860
Kardanpour, 2005, Wavelet neural network-based QSPR for prediction of critical micelle concentration of gemini surfactants, Anal. Chim. Acta, 531, 285, 10.1016/j.aca.2004.10.028
Tabaraki, 2017, Multidye Biosorption: wavelet neural network modeling and Taguchi L16 orthogonal array design, Clean, 45, 1500499
Benvidi, 2011, Application of principal component–wavelet neural network in spectrophotometric determination of acidity constants of 4-(2-thiazolylazo)-resorcinol, Spectrochim. Acta, Part A, 78, 1380, 10.1016/j.saa.2011.01.014
Gutierreza, 2008, Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds, Talanta, 76, 373, 10.1016/j.talanta.2008.03.009
Garkani-Nejad, 2010, Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones, Electrochim. Acta, 55, 2597, 10.1016/j.electacta.2009.11.083
Khayamian, 2006, Extending the dynamic range of copper determination in differential pulse adsorption cathodic stripping voltammetry using wavelet neural network, Talanta, 69, 1176, 10.1016/j.talanta.2005.12.033
Fard Masoumi, 2014, Optimization of process parameters for lipase-catalyzed synthesis of esteramines-based esterquats using wavelet neural network (WNN) in 2-liter bioreactor, J. Ind. Eng. Chem., 20, 1973, 10.1016/j.jiec.2013.09.019
Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern., 23, 665, 10.1109/21.256541
Jang, 1997
Khajeh, 2011, Quantitative structure-property relationship prediction of liquid thermal conductivity for some alcohols, Struct. Chem., 22, 1315, 10.1007/s11224-011-9828-6
Buyukbingol, 2007, Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists, Bioorg. Med. Chem., 15, 4265, 10.1016/j.bmc.2007.03.065
Jalali-Heravi, 2009, Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors, J. Pharmaceut. Biomed. Anal., 50, 853, 10.1016/j.jpba.2009.07.009
Shahlaei, 2013, Modeling of CCR5 antagonists as anti HIV agents using combined genetic algorithm and adaptive neuro-fuzzy inference system (GA-ANFIS), Med. Chem. Res., 22, 4423, 10.1007/s00044-012-0448-5
Lau, 2013, Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS, Chemometr. Intell. Lab. Syst., 120, 1, 10.1016/j.chemolab.2012.10.005
Yetilmezsoy, 2011, An adaptive neuro-fuzzy approach for modeling of water-in-oil emulsion formation, Colloid. Surface. A, 389, 50, 10.1016/j.colsurfa.2011.08.051
Gulbag, 2006, A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems, Sensor. Actuator. B, 115, 252, 10.1016/j.snb.2005.09.009
Goodarzi, 2009, Principal component analysis-adaptive neuro-fuzzy inference systems (ANFISs) for the simultaneous spectrophotometric determination of three metals in water samples, Spectrochim. Acta, Part A, 73, 608, 10.1016/j.saa.2009.03.002
Sarkar, 2014, Application of ANFIS model to optimise the photocatalytic degradation of chlorhexidine digluconate, RSC Adv., 4, 21141, 10.1039/c4ra00389f
Ghaedi, 2014, Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticles-activated carbon, Spectrochim. Acta, Part A, 131, 606, 10.1016/j.saa.2014.03.055
Bishop, 2006
Tetko, 1995, Neural network studies. 1. comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sci., 35, 826, 10.1021/ci00027a006
Livingstone, 2008
Kauffman, 2001, Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships, J. Chem. Inf. Comput. Sci., 41, 408, 10.1021/ci000139t
Zhang, 2001, Prediction of programmed-temperature retention values of naphthas by wavelet neural networks, Comput. Chem., 25, 125, 10.1016/S0097-8485(00)00074-7
Andrea, 1991, Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors, J. Med. Chem., 34, 2824, 10.1021/jm00113a022
Zhang, 1999, Application of artificial neural networks for prediction of the retention indices of alkylbenzenes, Chemometr. Intell. Lab. Syst., 45, 113, 10.1016/S0169-7439(98)00095-1
Ruggieri, 2005, Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography, J. Chromatogr. A, 1076, 163, 10.1016/j.chroma.2005.04.038
Loukas, 2001, Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies, J. Med. Chem., 44, 2772, 10.1021/jm000226c
Yao, 2002, Prediction of gas chromatographic retention indices by the use of radial basis function neural networks, Talanta, 57, 297, 10.1016/S0039-9140(02)00031-0
Jalali-Heravi, 2000, Prediction of thermal conductivity detection response factors using an artificial neural network, J. Chromatogr. A, 897, 227, 10.1016/S0021-9673(00)00793-7
Khayamian, 2004, Prediction of solubility for polycyclic aromatic hydrocarbons in supercritical carbon dioxide using wavelet neural networks in quantitative structure property relationship, J. Supercrit. Fluids, 32, 73, 10.1016/j.supflu.2004.02.003
Nirmalakhandan, 1988, QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349, 10.1021/es00176a016
MATLAB
Gramatica, 2016, A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology, J. Chem. Inf. Model., 56, 1127, 10.1021/acs.jcim.6b00088
Consonni, 2009, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model., 49, 1669, 10.1021/ci900115y
Lin, 1989, A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255, 10.2307/2532051
Burnham, 2004, Multimodel inference: understanding AIC and BIC in model selection, Socio. Methods Res., 33, 261, 10.1177/0049124104268644