Performance comparison of wavelet neural network and adaptive neuro-fuzzy inference system with small data sets

Journal of Molecular Graphics and Modelling - Tập 100 - Trang 107698 - 2020
Reza Tabaraki1, Mina Khodabakhshi1
1Department of Chemistry, Faculty of Basic Science, Ilam University, Ilam, Iran

Tài liệu tham khảo

Gasteiger, 1993, Neural networks in chemistry, Angew. Chem. Int. Ed., 32, 503, 10.1002/anie.199305031 Despagne, 1993, Neural networks in multivariate calibration, Analyst, 123, 157R, 10.1039/a805562i Jalali-Heravi, 2008, Neural networks in analytical chemistry, Methods Mol. Biol., 458, 81 Khayamian, 2005, Principal component-wavelet neural networks as a new multivariate calibration method, Anal. Lett., 38, 1477, 10.1081/AL-200062265 Zhang, 1995, Wavelet neural networks for function learning, IEEE Trans. Signal Process., 43, 1485, 10.1109/78.388860 Kardanpour, 2005, Wavelet neural network-based QSPR for prediction of critical micelle concentration of gemini surfactants, Anal. Chim. Acta, 531, 285, 10.1016/j.aca.2004.10.028 Tabaraki, 2017, Multidye Biosorption: wavelet neural network modeling and Taguchi L16 orthogonal array design, Clean, 45, 1500499 Benvidi, 2011, Application of principal component–wavelet neural network in spectrophotometric determination of acidity constants of 4-(2-thiazolylazo)-resorcinol, Spectrochim. Acta, Part A, 78, 1380, 10.1016/j.saa.2011.01.014 Gutierreza, 2008, Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds, Talanta, 76, 373, 10.1016/j.talanta.2008.03.009 Garkani-Nejad, 2010, Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones, Electrochim. Acta, 55, 2597, 10.1016/j.electacta.2009.11.083 Khayamian, 2006, Extending the dynamic range of copper determination in differential pulse adsorption cathodic stripping voltammetry using wavelet neural network, Talanta, 69, 1176, 10.1016/j.talanta.2005.12.033 Fard Masoumi, 2014, Optimization of process parameters for lipase-catalyzed synthesis of esteramines-based esterquats using wavelet neural network (WNN) in 2-liter bioreactor, J. Ind. Eng. Chem., 20, 1973, 10.1016/j.jiec.2013.09.019 Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern., 23, 665, 10.1109/21.256541 Jang, 1997 Khajeh, 2011, Quantitative structure-property relationship prediction of liquid thermal conductivity for some alcohols, Struct. Chem., 22, 1315, 10.1007/s11224-011-9828-6 Buyukbingol, 2007, Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists, Bioorg. Med. Chem., 15, 4265, 10.1016/j.bmc.2007.03.065 Jalali-Heravi, 2009, Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors, J. Pharmaceut. Biomed. Anal., 50, 853, 10.1016/j.jpba.2009.07.009 Shahlaei, 2013, Modeling of CCR5 antagonists as anti HIV agents using combined genetic algorithm and adaptive neuro-fuzzy inference system (GA-ANFIS), Med. Chem. Res., 22, 4423, 10.1007/s00044-012-0448-5 Lau, 2013, Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS, Chemometr. Intell. Lab. Syst., 120, 1, 10.1016/j.chemolab.2012.10.005 Yetilmezsoy, 2011, An adaptive neuro-fuzzy approach for modeling of water-in-oil emulsion formation, Colloid. Surface. A, 389, 50, 10.1016/j.colsurfa.2011.08.051 Gulbag, 2006, A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems, Sensor. Actuator. B, 115, 252, 10.1016/j.snb.2005.09.009 Goodarzi, 2009, Principal component analysis-adaptive neuro-fuzzy inference systems (ANFISs) for the simultaneous spectrophotometric determination of three metals in water samples, Spectrochim. Acta, Part A, 73, 608, 10.1016/j.saa.2009.03.002 Sarkar, 2014, Application of ANFIS model to optimise the photocatalytic degradation of chlorhexidine digluconate, RSC Adv., 4, 21141, 10.1039/c4ra00389f Ghaedi, 2014, Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticles-activated carbon, Spectrochim. Acta, Part A, 131, 606, 10.1016/j.saa.2014.03.055 Bishop, 2006 Tetko, 1995, Neural network studies. 1. comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sci., 35, 826, 10.1021/ci00027a006 Livingstone, 2008 Kauffman, 2001, Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships, J. Chem. Inf. Comput. Sci., 41, 408, 10.1021/ci000139t Zhang, 2001, Prediction of programmed-temperature retention values of naphthas by wavelet neural networks, Comput. Chem., 25, 125, 10.1016/S0097-8485(00)00074-7 Andrea, 1991, Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors, J. Med. Chem., 34, 2824, 10.1021/jm00113a022 Zhang, 1999, Application of artificial neural networks for prediction of the retention indices of alkylbenzenes, Chemometr. Intell. Lab. Syst., 45, 113, 10.1016/S0169-7439(98)00095-1 Ruggieri, 2005, Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography, J. Chromatogr. A, 1076, 163, 10.1016/j.chroma.2005.04.038 Loukas, 2001, Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies, J. Med. Chem., 44, 2772, 10.1021/jm000226c Yao, 2002, Prediction of gas chromatographic retention indices by the use of radial basis function neural networks, Talanta, 57, 297, 10.1016/S0039-9140(02)00031-0 Jalali-Heravi, 2000, Prediction of thermal conductivity detection response factors using an artificial neural network, J. Chromatogr. A, 897, 227, 10.1016/S0021-9673(00)00793-7 Khayamian, 2004, Prediction of solubility for polycyclic aromatic hydrocarbons in supercritical carbon dioxide using wavelet neural networks in quantitative structure property relationship, J. Supercrit. Fluids, 32, 73, 10.1016/j.supflu.2004.02.003 Nirmalakhandan, 1988, QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349, 10.1021/es00176a016 MATLAB Gramatica, 2016, A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology, J. Chem. Inf. Model., 56, 1127, 10.1021/acs.jcim.6b00088 Consonni, 2009, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model., 49, 1669, 10.1021/ci900115y Lin, 1989, A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255, 10.2307/2532051 Burnham, 2004, Multimodel inference: understanding AIC and BIC in model selection, Socio. Methods Res., 33, 261, 10.1177/0049124104268644