Performance comparison of integrated fully-differential filterless class-D amplifiers with different feedback techniques
Tóm tắt
Two integrated stereo fully differential filterless class-D amplifiers are presented in this paper. The object is to develop a modulation of a class-D audio amplifier with high power efficiency in this paper. The traditional H-bridge class-D audio amplifier has a shortcoming of large signal distortion which is worse than realized. However, the proposed circuit improves the drawback and provides high power efficiency at the same time. The circuit implements a modified scheme of pulse-width modulation. In this paper, we presented two class-D amplifiers, compared their differences and explained why the efficiency and distortion performance can be modified. The increase in total harmonic distortion (THD) is due to non-linearity in the triangle wave. To overcome this problem, a negative feedback from the output of the switching power stage is adopted to reduce the THD. When a 0.7-VPP and 1 kHz sine wave is used as an input signal, the minimum THD is 0.029 % and the maximum power efficiency is 83 %. The fully differential class-D audio amplifier is implemented with a TSMC 0.35-μm 2P4M CMOS process, and the chip area is 2.57 × 2.57 mm2 (with PADs).
Tài liệu tham khảo
Li, S. C., Lin, V. C. C., Nandhasri, K., & Ngarmnil, J. (2005). New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics. IEEE Transactions on Circuits System II, 52(9), 1767–1774.
Bresch, H ,Streitenberger, M., & Mathis, W.(2006). “About the demodulation of PWM signals with application to amplifiers,” in Proceedings IEEE International Symposium on Circuits and Systems (pp. 205–208).
Shu, W., & Chang, J. S. (2009). “Power supply noise in analog audio class D amplifiers”. IEEE Transactions on Circuits and Systems I, 56(1), 84–86.
Rojas-GonzalezM. A., & Sanchez-Sinencio, E. (2009). “Two class-D audio amplifiers with 89/90 % efficiency and 0.02/0.03 % THD + N consuming less than 1mW of quiescent power,” in ISSCC Dig. Tech papers (pp. 450–451).
Yeh, M. L., Liou, W. R., Hsieh, H. P., & Lin, Y. J. (2010). An electromagnetic interference (EMI) reduced high-efficiency switching power amplifier. IEEE Transactions on Power Electronics, 25(3), 710–718.
Berkhout, M., & Dooper, L. (2010). “Class-D audio amplifiers in mobile applications”. IEEE Transactions on Circuits and Systems I, 57(5), 992–1002.
Krabbenborg, B., & Berkhout, M. (2010). Closed-loop class-D amplifier with nonlinear loop integrators. IEEE Journal of Solid-State Circuits, 45(7), 1389–1398.
Torres, J., Colli-Menchi, A., Rojas-Gonzalez, M. A., & Sanchez-Sinencio, E. (2011). A low-power high-PSRR clock-free current-controlled class-D audio amplifier. IEEE Journal of Solid-State Circuits, 46(7), 1553–1561.
Shu, W., & Chang, J. S. (2010). “IMD of closed-loop filterless class D amplifiers”. IEEE Transactions on Circuits and Systems I, 57(2), 518–527.
Tan, M. T., Chang, J. S., Chua, H. C., & Gwee, B. H. (2003). An investigation into the parameters affecting total harmonic distortion in a CDA. IEEE Transaction Circuits System I, 50(10), 1304–1315.
Chen, J. J., Lin, H. C., Kung, C. M., Hwang, Y. S., & Su, J. H. (2008). Integrated class-D amplifier with active current sensing suitable for alternating current switches. IEEE Transaction on Industrial Electronics, 55(8), 3141–3149.
Hwang, Y. S., Shen, J. H., Chen, J. J., Du, Y. R., & Yu, C. C. (2012). Implementation of THD-reduction stereo audio amplifier using compensators and sigma–delta modulators. Analog Integrated Circuits and Signal Processing, 73(1), 243–253.
Tien-Feng Chen, W., Corsi, M., Clifton Jones, III, R & David Score, M. all of TX(US), “Modulation scheme for filterless switching amplifiers,” US Patent no. 6,211,728, 3 Apr 2001.
Berkhout, M. (2003). An integrated 200-W class-D audio amplifier. IEEE Journal of Solid-State Circuits, 38(7), 1198–1206.
Ge, T., & Chang, J. S. (2008). “Modeling and technique to improve PSRR and PS-IMD in analog PWM class D amplifiers”. IEEE Transaction on Circuits and Systems II, 55(6), 512–516.
Lee, S. Y. H., Wang, S. J., & Chen, K. H. (2010). Quadratic differential and integration technique in V 2 control buck converter with small ESR capacitor. IEEE Transactions on Power Electronics, 25(4), 829–838.
Lee, C. F., & Mok, P. K. T. (2004). A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique. IEEE Journal of Solid-State Circuits, 39(12), 3–14.
J. P. Uyemura, Introduction to VLSI circuits and systems, Atlanta, GA, Apr., 2001.
Chang, J. S., Tan, M. T., Cheng, Z. H., & Tong, Y. C. (2000). Analysis and design of power efficient class D amplifier output stages. IEEE Transactions on Circuits System I, 47(6), 897–902.
Rojas-Gonzalez, M. A., & Sanchez-Sinencio, E. (2007). Design of a class D audio amplifier IC using sliding mode control and negative feedback. IEEE Transactions on Consumer Electronics, 53(2), 609–617.
Forejt, B., Rentala, V., Arteaga, J. D., & Burra, G. (2005). A 700+-mW class D design with direct battery hookup in a 90-nm process. IEEE Journal of Solid-State Circuits, 40(9), 1880–1887.
Samala,S., Mishra,V., & Chakravarthi, K.C.(2010). “45 nm CMOS 8 Ω class-D audio driver with 79% efficiency and 100 dB SNR,” in ISSCC Digest Tech papers (pp. 86–74).
STMicroelectronics Data Sheet. [Online]. Available: http://www.st.com/.