Performance and programmability of GrPPI for parallel stream processing on multi-cores
Tóm tắt
Từ khóa
Tài liệu tham khảo
McCool M, Reinders J, Robison A (2012) Structured parallel programming: patterns for efficient computation. Elsevier, Amsterdam
Aldinucci M, Danelutto M, Kilpatrick P, Torquati M (2017) Fastflow: high-level and efficient streaming on multicore, Chap. 13. In: Pllana S, Xhafa F (eds) Programming multi-core and many-core computing systems. Wiley, Hoboken, pp 261–280. https://doi.org/10.1002/9781119332015.ch13
Voss M, Asenjo R, Reinders J (2019) Pro TBB: C++ parallel programming with threading building blocks, vol 295. Springer, Berkeley
Rio Astorga D, Dolz MF, Fernández J, García JD (2017) A generic parallel pattern interface for stream and data processing. Concurrency Comput Pract Exp. https://doi.org/10.1002/cpe.4175
del Rio Astorga D, Dolz MF, Fernández J, García JD (2018) Paving the way towards high-level parallel pattern interfaces for data stream processing. Future Gen Comput Syst 87:228–241. https://doi.org/10.1016/j.future.2018.05.011
Muñoz JF, Dolz MF, Rio Astorga D, Cepeda JP, García JD (2018) Supporting MPI-distributed stream parallel patterns in GrPPI. In: Proceedings of the 25th European MPI Users’ Group Meeting, EuroMPI’18. ACM, New York, NY, USA. https://doi.org/10.1145/3236367.3236380
López-Gómez J, Fernández Muñoz J, del Rio Astorga D, Dolz MF, Garcia JD (2019) Exploring stream parallel patterns in distributed MPI environments. Parallel Comput 84:24–36. https://doi.org/10.1016/j.parco.2019.03.004
Garcia AM, Griebler D, Schepke C, García JD, Muñoz JF, Fernandes LG (2023) A latency, throughput, and programmability perspective of GrPPI for streaming on multi-cores. In: 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), PDP’23. IEEE, Naples, Italy, pp 164–168. https://doi.org/10.1109/PDP59025.2023.00033
Garcia AM, Griebler D, Schepke C, Fernandes LG (2022) SPBench: a framework for creating benchmarks of stream processing applications. Computing. https://doi.org/10.1007/s00607-021-01025-6
Vogel A, Griebler D, Danelutto M, Fernandes LG (2022) Self-adaptation on parallel stream processing: a systematic review. Concurrency Comput Pract Exp 34(6):6759. https://doi.org/10.1002/cpe.6759
Garcia JD, Rio D, Aldinucci M, Tordini F, Danelutto M, Mencagli G, Torquati M (2020) Challenging the abstraction penalty in parallel patterns libraries. J Supercomput 76(7):5139–5159. https://doi.org/10.1007/s11227-019-02826-5
Garcia AM, Griebler D, Schepke C, Fernandes LG (2023) Micro-batch and data frequency for stream processing on multi-cores. J Supercomput. https://doi.org/10.1007/s11227-022-05024-y
Garcia-Blas J, Rio Astorga D, García JD, Carretero J (2019) Exploiting stream parallelism of MRI reconstruction using GrPPI over multiple back-ends. In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp 631–637. https://doi.org/10.1109/CCGRID.2019.00081
Vílchez Moya C (2020) Application parallelization and debugging using pattern-based programming. Technical report, Undergraduate Thesis of Double Degree in Computer Engineering and Mathematics, Faculty of Informatics UCM, Department of Computer Architecture and Automation. https://eprints.ucm.es/id/eprint/62014/
Brown C, Janjic V, Barwell AD, Garcia JD, MacKenzie K (2020) Refactoring GrPPI: generic refactoring for generic parallelism in C++. Int J Parallel Prog 48(4):603–625. https://doi.org/10.1007/s10766-020-00667-x
Andrade G, Griebler D, Santos R, Danelutto M, Fernandes LG (2021) Assessing coding metrics for parallel programming of stream processing programs on multi-cores. In: 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), SEAA’21. IEEE, Pavia, Italy, pp 291–295
Bienia C, Kumar S, Singh JP, Li K (2008) The PARSEC benchmark suite: characterization and architectural implications. In: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, pp 72–81
Liu S, Gaudiot J-L (2020) Autonomous vehicles lite self-driving technologies should start small, go slow. IEEE Spectrum 57(3):36–49. https://doi.org/10.1109/MSPEC.2020.9014458
Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (2005) A modern introduction to probability and statistics: understanding why and how, vol 488. Springer, Berkeley
Ignatious HA, Sayed H-E, Khan M (2022) An overview of sensors in autonomous vehicles. Procedia Comput Sci 198:736–741. https://doi.org/10.1016/j.procs.2021.12.315
Bagwe GR (2018) Video frame reduction in autonomous vehicles. Master’s Thesis, Michigan Technological University, Michigan, USA. https://doi.org/10.37099/mtu.dc.etdr/645
Andrade G, Griebler D, Santos R, Fernandes LG (2023) A parallel programming assessment for stream processing applications on multi-core systems. Comput Stand Interfaces 84:1–25. https://doi.org/10.1016/j.csi.2022.103691
Andrade G, Griebler D, Santos R, Kessler C, Ernstsson A, Fernandes LG (2022) Analyzing programming effort model accuracy of high-level parallel programs for stream processing. In: Proceedings of the International Conference on Software Engineering and Advanced Applications, pp 229–232. https://doi.org/10.1109/SEAA56994.2022.00043
Halstead MH (1977) Elements of software science, vol 36. Elsevier, New York, pp 4–41
Bordin MV, Griebler D, Mencagli G, Geyer CFR, Fernandes LG (2020) DSPBench: a suite of benchmark applications for distributed data stream processing systems. IEEE Access 8(na):222900–222917. https://doi.org/10.1109/ACCESS.2020.3043948