Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu suất và cơ chế loại bỏ carbamazepine bằng quá trình FeS-S2O82−: nghiên cứu thực nghiệm và tính toán DFT
Tóm tắt
Vì persulfate (S2O82−) ngày càng được sử dụng như một tác nhân oxi hóa thay thế, việc phát triển các chất xúc tác giá rẻ và thân thiện với môi trường để kích hoạt S2O82− một cách hiệu quả có thể rất hữu ích cho việc xử lý nước thải chứa các chất ô nhiễm hữu cơ khó phân hủy. Trong nghiên cứu này, các đặc điểm phân hủy và cơ chế của carbamazepine (CBZ) đã được nghiên cứu một cách hệ thống trong một quá trình FeS-S2O82− mới dưới điều kiện gần trung tính. Kết quả cho thấy CBZ có thể được loại bỏ hiệu quả bởi quá trình FeS-S2O82− với các điều kiện tối ưu: 250 mg/L FeS, 0.5 mmol/L S2O82− và pH = 6.0. Sự tồn tại của Cl− (1 và 50 mmol/L) có ảnh hưởng ít đến việc loại bỏ CBZ, trong khi cả HCO3− và HPO42− (1 và 50 mmol/L) đều làm giảm đáng kể quá trình loại bỏ CBZ trong quá trình FeS-S2O82−. CBZ có thể bị phân hủy thông qua một cơ chế gốc tự do trong quá trình FeS-S2O82−, các loài gốc tự do hoạt động (i.e., SO4•− và •OH) được tạo thành một cách hiệu quả thông qua sự phân hủy thúc đẩy của S2O82− bởi các ion Fe2+ trên bề mặt FeS và các ion sắt II hòa tan trong dung dịch. Dựa trên các sản phẩm oxy hóa đã được xác định và tính toán chỉ số Fukui, một con đường phân hủy có thể của CBZ đã được suy đoán. Quan trọng hơn, một cơ chế oxy hóa hai giai đoạn của việc loại bỏ CBZ đã được suy đoán trong quá trình FeS-S2O82−, việc kích hoạt S2O82− bởi Fe(II) hoạt động bề mặt của FeS đã chiếm ưu thế trong 5 phút đầu tiên, trong khi các phản ứng oxy hóa đồng nhất đã đóng vai trò quan trọng hơn trong giai đoạn phản ứng tiếp theo (5–60 phút). Tổng thể, nghiên cứu này đã chứng minh rằng quá trình FeS-S2O82− có khả năng loại bỏ CBZ một cách hiệu quả khỏi nước.
Từ khóa
#persulfate #carbamazepine #FeS #xử lý nước thải #gốc tự do #cơ chế oxy hóaTài liệu tham khảo
Ali J, Wang H, Ifthikar J, Khan A, Wang T, Zhan K, Shahzad A, Chen Z, Chen Z (2018). Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water. Chemical Engineering Journal, 332: 387–397
Cai S, Chen B, Qiu X, Li J, Tratnyek P G, He F (2021). Sulfidation of zero-valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of Trichloroethylene. Environmental Science & Technology, 55(1): 645–654
Cai Y, Fan J, Liu Z (2022). Enhanced degradation of tetracycline over FeS-based Fenton-like process: autocatalytic decomposition of H2O2 and reduction of Fe(III). Journal of Hazardous Materials, 436: 129092
Chen F, Huang G X, Yao F B, Yang Q, Zheng Y M, Zhao Q B, Yu H Q (2020). Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism. Water Research, 173: 115559
Devi P, Das U, Dalai A K (2016). In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571: 643–657
Du J, Guo W, Wang H, Yin R, Zheng H, Feng X, Che D, Ren N (2018). Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways. Water Research, 138: 323–332
Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L, Wang Z (2015). Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Research, 85: 1–10
Huang S, Xu C, Shao Q, Wang Y, Zhang B, Gao B, Zhou W, Tratnyek P G (2018). Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms. Chemical Engineering Journal, 338: 539–547
Kim K, Cho E, Thokchom B, Cui M, Jang M, Khim J (2015). Synergistic sonoelectrochemical removal of substituted phenols: implications of ultrasonic parameters and physicochemical properties. Ultrasonics Sonochemistry, 24: 172–177
Lee J, Von Gunten U, Kim J H (2020). Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54(6): 3064–3081
Lee Y C, Lo S L, Kuo J, Lin Y L (2012). Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chemical Engineering Journal, 198–199: 27–32
Li D, Ali J, Shahzad A, Abdelnasser Gendy E, Nie H, Jiang W, Xiao H, Chen Z, Wang S (2022a). Persulfate coupled with Cu2+/LDH-MoS4: a novel process for the efficient atrazine abatement, mechanism and degradation pathway. Chemical Engineering Journal, 436: 134933
Li H, Chen J, Hou H, Pan H, Ma X, Yang J, Wang L, Crittenden J C (2017). Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: mechanism and application to norfloxacin degradation. Water Research, 126: 274–284
Li H, Fu Y, Mei C, Wang M (2022b). Effective degradation of Direct Red 81 using FeS-activated persulfate process. Journal of Environmental Management, 308: 114616
Li J, Wan Y, Li Y, Yao G, Lai B (2019). Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Applied Catalysis B: Environmental, 256: 117782
Li J, Zhang X, Liu M, Pan B, Zhang W, Shi Z, Guan X (2018). Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions. Environmental Science & Technology, 52(5): 2988–2997
Li S, Huang T, Du P, Liu W, Hu J (2020). Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: experimental and theoretical evidences. Water Research, 185: 116286
Li Y, Yang Y, Lei J, Liu W, Tong M, Liang J (2021). The degradation pathways of carbamazepine in advanced oxidation process: a mini review coupled with DFT calculation. Science of the Total Environment, 779: 146498
Liang C, Wang Z S, Bruell C J (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66(1): 106–113
Ma L, Liu Y, Yang Q, Jiang L, Li G (2022). Occurrence and distribution of Pharmaceuticals and Personal Care Products (PPCPs) in wastewater related riverbank groundwater. Science of the Total Environment, 821: 153372
Ma Z, Cao H, Lv F, Yang Y, Chen C, Yang T, Zheng H, Wu D (2021). Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5. Frontiers of Environmental Science & Engineering, 15(5): 98
Oh S Y, Kang S G, Kim D W, Chiu P C (2011). Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides. Chemical Engineering Journal, 172(2–3): 641–646
Pan F, Ji H, Du P, Huang T, Wang C, Liu W (2021). Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: mechanism, ecotoxicity and DFT study. Journal of Hazardous Materials, 402: 123779
Qi C, Liu X, Lin C, Zhang X, Ma J, Tan H, Ye W (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chemical Engineering Journal, 249: 6–14
Rodea-Palomares I, Gonzalez-Pleiter M, Gonzalo S, Rosal R, Leganes F, Sabater S, Casellas M, Munoz-Carpena R, Fernandez-Pinas F (2016). Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. Science Advances, 2(9): e1601272
Sun B, Guan X, Fang J, Tratnyek P G (2015). Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(III). Environmental Science & Technology, 49(20): 12414–12421
Van Den Brandhof E J, Montforts M (2010). Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicology and Environmental Safety, 73(8): 1862–1866
Wan M, Shchukarev A, Lohmayer R, Planer-Friedrich B, Peiffer S (2014). Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environmental Science & Technology, 48(9): 5076–5084
Wang S, Wang J (2019). Oxidative removal of carbamazepine by peroxymonosulfate (PMS) combined to ionizing radiation: degradation, mineralization and biological toxicity. Science of the Total Environment, 658: 1367–1374
Wang X, Jin Y, Chen W, Zou R, Xie J, Tang Y, Li X, Li L (2021). Electro-catalytic activity of CeOx modified graphite felt for carbamazepine degradation via E-peroxone process. Frontiers of Environmental Science & Engineering, 15(6); 1–10
Wu R, Wang S (2021). Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides. Frontiers of Environmental Science & Engineering, 16(2): 1–22
Xiang W, Chen H, Zhong Z, Zhang C, Lu X, Huang M, Zhou T, Yu P, Zhang B (2022). Efficient degradation of carbamazepine in a neutral sonochemical FeS/persulfate system based on the enhanced heterogeneous-homogeneous sulfur-iron cycle. Separation and Purification Technology, 282: 120041
Xiang W, Huang M, Wang Y, Wu X, Zhang F, Li D, Zhou T (2020). New insight in the O2 activation by nano Fe/Cu bimetals: the synergistic role of Cu0 and Fe(II). Chinese Chemical Letters, 31(10): 2831–2834
Yan J, Peng J, Lai L, Ji F, Zhang Y, Lai B, Chen Q, Yao G, Chen X, Song L (2018). Activation CuFe2O4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole. Environmental Science & Technology, 52(24): 14302–14310
Yang S R, He C S, Xie Z H, Li L L, Xiong Z K, Zhang H, Zhou P, Jiang F, Mu Y, Lai B (2022). Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species. Water Research, 217: 118402
Zhong Z, Lu X, Yan R, Lin S, Wu X, Huang M, Liu Z, Zhang F, Zhang B, Zhu H, et al. (2020). Phosphate sequestration by magnetic La-impregnated bentonite granules: a combined experimental and DFT study. Science of the Total Environment, 738: 139636
Zhou C, Zhou P, Sun M, Liu Y, Zhang H, Xiong Z, Liang J, Duan X, Lai B (2022). Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: role of near-free iron(III) for sustainable iron(III)/iron(II) cycles. Water Research, 210: 117984
Zhou H, Peng J, Li J, You J, Lai L, Liu R, Ao Z, Yao G, Lai B (2021). Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation. Water Research, 188: 116529