Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors
Tài liệu tham khảo
Abdelhafez, 2017, Speed-up of synchronous and asynchronous distributed Genetic Algorithms: a first common approach on multiprocessors, 2677
Abdelhafez, 2019, A component-based study of energy consumption for sequential and parallel genetic algorithms, J. Supercomput., 1
Alba, 2002, Parallel evolutionary algorithms can achieve super-linear performance, Inf. Process. Lett., 82, 7, 10.1016/S0020-0190(01)00281-2
Alba, 2005
Alba, 2004, Advances in parallel heterogeneous genetic algorithms for continuous optimization, Int. J. Appl. Math. Comput. Sci., 14, 317
Alba, 2004, Parallel heterogeneous genetic algorithms for continuous optimization, Parallel Comput., 30, 699, 10.1016/j.parco.2003.12.011
Alba, 1999, A survey of parallel distributed genetic algorithms, Complexity, 4, 31, 10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
Alba, 2000, Influence of the migration policy in parallel distributed GAs with structured and panmictic populations, Appl. Intell., 12, 163, 10.1023/A:1008358805991
Alba, 2001, Analyzing synchronous and asynchronous parallel distributed genetic algorithms, Future Gener. Comput. Syst., 17, 451, 10.1016/S0167-739X(99)00129-6
Alba, 2002, Improving flexibility and efficiency by adding parallelism to genetic algorithms, Stat. Comput., 12, 91, 10.1023/A:1014803900897
Cantu-Paz, 2000
Cantu-Paz, 2000, Efficient parallel genetic algorithms: theory and practice, Comput. Methods Appl. Mech. Eng., 186, 221, 10.1016/S0045-7825(99)00385-0
Chen, 2012, A parallel ant colony algorithm on massively parallel processors and its convergence analysis for the travelling salesman problem, Inf. Sci., 199, 31, 10.1016/j.ins.2012.02.055
Cutillas-Lozano, 2014, Optimizing shared-memory hyperheuristics on top of parameterized metaheuristics, Procedia Comput. Sci., 29, 20, 10.1016/j.procs.2014.05.002
Del Ser, 2019, Bio-inspired computation: where we stand and what's next, Swarm Evol. Comput., 48, 220, 10.1016/j.swevo.2019.04.008
Dubreuil, 2006, Analysis of a master-slave architecture for distributed evolutionary computations, IEEE Trans. Syst., Man Cybern., Part B (Cybernetics), 36, 229, 10.1109/TSMCB.2005.856724
George, 2003
Gonalves-E-Silva, 2018, Parallel synchronous and asynchronous coupled simulated annealing, J. Supercomput., 74, 2841, 10.1007/s11227-018-2327-4
Gong, 2015, Distributed evolutionary algorithms and their models: a survey of the state-of-the-art, Appl. Soft Comput., 34, 286, 10.1016/j.asoc.2015.04.061
Harada, 2017, Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony, 1215
Hedar, 2012, 295
Hughes, 2003
Jong, 1997, Using problem generators to explore the effects of epistasis, 338
Kim, 2005, 541
Kim, 2019, A comparison study of harmony search and genetic algorithm for the max-cut problem, Swarm Evol. Comput., 44, 130, 10.1016/j.swevo.2018.01.004
Koh, 2006, Parallel asynchronous particle swarm optimization, Int. J. Numer. Methods Eng., 67, 578, 10.1002/nme.1646
Liu, 2015, A scalable parallel genetic algorithm for the Generalized Assignment Problem, Parallel Comput., 46, 98, 10.1016/j.parco.2014.04.008
Luque, 2011
Mabrouk, 2009, On a parallel genetictabu search based algorithm for solving the graph colouring problem, Eur. J. Oper. Res., 197, 1192, 10.1016/j.ejor.2008.03.050
MacWilliams, 1977
Mcmahon, 2000, A distributed genetic algorithm with migration for the design of composite laminate structures, Parallel Algorithm Appl., 14, 329, 10.1080/10637199808947394
Molina, 2010, Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains, Soft Computing, 15, 2201, 10.1007/s00500-010-0647-2
Mostaghim, 2008, Parallel multi-objective optimization using Master-Slave model on heterogeneous resources, 1981
Pedemonte, 2018, A theoretical and empirical study of the trajectories of solutions on the grid of systolic genetic search, Inf. Sci., 445446, 97, 10.1016/j.ins.2018.02.033
Qian, 2016, Parallel pareto optimization for subset selection, 1939
Rada-Vilela, 2013, A performance study on synchronicity and neighborhood size in particle swarm optimization, Soft Comput., 17, 1019, 10.1007/s00500-013-1015-9
Ruciski, 2010, On the impact of the migration topology on the Island Model, Parallel Comput., 36, 555, 10.1016/j.parco.2010.04.002
Santander-Jimenez, 2017, Asynchronous non-generational model to parallelize metaheuristics: a bioinformatics case study, IEEE Trans. Parallel Distrib. Syst., 28, 1825, 10.1109/TPDS.2016.2645764
Schaffer, 1991, On crossover as an evolutionary viable strategy, 61
Serani, 2016, Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems, Appl. Soft Comput., 49, 313, 10.1016/j.asoc.2016.08.028
Stinson, 1985
Talbi, 2009
Tang, 2016, Negatively correlated search, IEEE J. Sel. Area. Commun., 34, 1, 10.1109/JSAC.2016.2525458
Venter, 2006, Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations, J. Aerosp. Comput. Inf. Commun., 3, 123, 10.2514/1.17873
Xu, 2018, Theoretical results of QoS-guaranteed resource scaling for cloud-based MapReduce, IEEE Trans. Cloud Comput., 6, 879, 10.1109/TCC.2016.2535277
Yang, 2018, Turning high-dimensional optimization into computationally expensive optimization, IEEE Trans. Evol. Comput., 22, 143, 10.1109/TEVC.2017.2672689
Zhan, 2017, Cloudde: a heterogeneous differential evolution algorithm and its distributed cloud version, IEEE Trans. Parallel Distrib. Syst., 28, 704, 10.1109/TPDS.2016.2597826