Performance analysis of error-control B-spline Gaussian collocation software for PDEs

Computers & Mathematics with Applications - Tập 77 - Trang 1888-1901 - 2019
Jack Pew1, Zhi Li2, Connor Tannahill1, Paul Muir1, Graeme Fairweather3
1Mathematics and Computing Science, Saint Mary’s University, Halifax, NS, Canada,B3H 3C3
2Michigan State University, East Lansing, MI 48824, USA
3Mathematical Reviews, American Mathematical Society, Ann Arbor, MI 48103, USA

Tài liệu tham khảo

de Boor, 2001, A practical guide to splines Ascher, 1981, Collocation software for boundary value ODEs, ACM Trans. Math. Software, 7, 209, 10.1145/355945.355950 NAG Numerical Algorithms Group fortran library. d02tlf. in: The Numerical Algorithms Group, Ltd., Wilkinson House, Oxford, UK. Scilab, bvode, Scilab Enterprises, 143 bis rue Yves Le Coz, 78000 Versailles, France. P. Virtanen, Scikits.bvp1lg 0.2.8, https://pv.github.io/scikits.bvp1lg/. Brenan, 1996, Numerical solution of initial-value problems in differential-algebraic equations Madsen, 1979, Algorithm 540: PDECOL, general collocation software for partial differential equations, ACM Trans. Math. Software, 5, 326, 10.1145/355841.355849 Keast, 1991, Algorithm 688: EPDCOL: A more efficient PDECOL code, ACM Trans. Math. Software, 17, 153, 10.1145/108556.108558 Fairweather, 2004, Algorithms for almost block diagonal linear systems, SIAM Rev., 46, 49, 10.1137/S003614450240506X Díaz, 1983, Algorithm 603. COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans. Math. Software, 9, 376, 10.1145/356044.356054 Wang, 2004, BACOL: B-spline adaptive COL-location software for 1D parabolic PDEs, ACM Trans. Math. Software, 30, 454, 10.1145/1039813.1039817 Wang, 2004, A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Appl. Numer. Math., 50, 239, 10.1016/j.apnum.2003.12.023 Wang, 2008, Algorithm 874: BACOLR: Spatial and temporal error control software for PDEs based on high-order adaptive collocation, ACM Trans. Math. Software, 34, 15:1, 10.1145/1356052.1356056 Hairer, 1996, Solving ordinary differential equations. II Huang, 1996, A moving collocation method for solving time dependent partial differential equations, Appl. Numer. Math., 20, 101, 10.1016/0168-9274(95)00119-0 Moore, 2001, Interpolation error-based a posteriori error estimation for two-point boundary value problems and parabolic equations in one space dimension, Numer. Math., 90, 149, 10.1007/s002110100297 Wang, 2004, A comparison of adaptive software for 1D parabolic PDEs, J. Comput. Appl. Math., 169, 127, 10.1016/j.cam.2003.12.016 Pew, 2016, Algorithm 962: BACOLI: B-spline adaptive collocation software for PDEs with interpolation-based spatial error control, ACM Trans. Math. Software, 42, 25:1, 10.1145/2818312 Li, 2013, B-spline Gaussian collocation software for two-dimensional parabolic PDEs, Adv. Appl. Math. Mech., 5, 528, 10.4208/aamm.13-13S09 Huang, 2011, Adaptive moving mesh methods Muir, 2015, Tolerance vs. error results for a class of error control b-spline Gaussian collocation PDE solvers Pew, 2018, Performance analysis results for error control B-spline Gaussian collocation PDE solvers Arsenault, 2009, Superconvergent interpolants for efficient spatial error estimation in 1D PDE collocation solvers, Can. Appl. Math. Q., 17, 409 Arsenault, 2012, Asymptotically correct interpolation-based spatial error estimation for 1D PDE solvers, Can. Appl. Math. Q., 20, 307 Hairer, 1993, Solving ordinary differential equations. I Zhang, 1993, Diffusive effects on a catalytic surface reaction: An initial boundary value problem in reaction–diffusion-convection equations, J. Bifurc. Chaos, 3, 79, 10.1142/S0218127493000052