Performance analysis and small signal identification of time-resolved stand-off Raman spectroscopy system

Vibrational Spectroscopy - Tập 102 - Trang 16-23 - 2019
Jiabin Xia1,2, Qifeng Yao2, Lianqing Zhu1,2, Mingli Dong2, Xiaoping Lou2
1School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, 230009, China
2Beijing Engineering Research Center of Optoelectronic Information and Instrument, Beijing Key Laboratory of Optoelectronics Measurement Technology, Beijing Information Science and Technology University, Beijing, 100192, China

Tài liệu tham khảo

Smith, 2005 Hokr, 2014, Single-shot stand-off chemical identification of powders using random Raman lasing, Proc. Natl. Acad. Sci. U. S. A., 111, 12320, 10.1073/pnas.1412535111 Gleckler, 2010, Time-resolved Raman spectroscopy for in situ planetary mineralogy, Appl. Opt., 49, 4951, 10.1364/AO.49.004951 Golubev, 2016, Raman spectroscopic study of natural nanostructured carbon materials: shungitevs. anthraxolite, Eur. J. Mineral., 3, 545, 10.1127/ejm/2016/0028-2537 Shipp, 2017, Raman spectroscopy: techniques and applications in the life sciences, Adv. Opt. Photonics, 9, 315, 10.1364/AOP.9.000315 Buckley, 2017, Applications of Raman spectroscopy in biopharmaceutical manufacturing: a short review, Appl. Spectrosc., 71, 1085, 10.1177/0003702817703270 Evans, 2008, Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine, Annu. Rev. Anal. Chem., 1, 883, 10.1146/annurev.anchem.1.031207.112754 Buckley, 2011, Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis, J. Pharm. Biomed. Anal., 55, 645, 10.1016/j.jpba.2010.10.029 Vandenabeele, 2007, A decade of Raman spectroscopy in art and archaeology, Chem. Rev., 107, 675, 10.1021/cr068036i Li, 2017, Analysis of the pigments for smoked mural by confocal micro‐Raman spectroscopy, J. Raman Spectrosc., 48, 1479, 10.1002/jrs.5158 Petrov, 2007, Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores, Proc. Natl. Acad. Sci., 104, 7776, 10.1073/pnas.0702107104 Patil, 2012, A handheld laser scanning confocal reflectance imaging–confocal Raman microspectroscopy system, Biomed. Opt. Express, 3, 488, 10.1364/BOE.3.000488 Choe, 2017, In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils, J. Dermatol. Sci., 87, 183, 10.1016/j.jdermsci.2017.04.016 Ivleva, 2008, In situ surface-enhanced Raman scattering analysis of biofilm, Anal. Chem., 82, 8538, 10.1021/ac801426m Keleştemur, 2017, Understanding and discrimination of biofilms of clinically relevant microorganisms using surface-enhanced Raman scattering, Appl. Spectrosc., 71, 1180, 10.1177/0003702816670916 Areizaga-Martinez, 2016, Performance characteristics of bio-inspired metal nanostructures as Surface-Enhanced Raman Scattered (SERS) substrates, Appl. Spectrosc., 70, 1432, 10.1177/0003702816662596 Matousek, 1999, Efficient rejection of fluorescence from Raman spectra using picosecond kerr gating, Proc. Natl. Acad. Sci., 53, 1485 Misra, 2012, Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime, Appl. Spectrosc., 66, 1279, 10.1366/12-06617 Kostamovaara, 2013, Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD, Opt. Express, 21, 31632, 10.1364/OE.21.031632 Lamsal, 2016, Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer, Appl. Spectrosc., 70, 666, 10.1177/0003702816631304 Tahara, 1993, Picosecond Raman spectroscopy using a streak camera, Appl. Spectrosc., 47, 391, 10.1366/0003702934335001 Maruyama, 2012, A time-resolved 128x128 SPAD camera for laser Raman spectroscopy,” SPIE Defense, security, and sensing, Int. Soc. Opt. Photonics Misra, 2006, Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse, Appl. Spectrosc., 60, 223, 10.1366/000370206776023412 Sharma, 2006, Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters, Appl. Spectrosc., 60, 871, 10.1366/000370206778062110 Misra, 2007, Daytime rapid detection of minerals and organics from 50 and 100 m distances using a remote Raman system, Proc. SPIE. Int. Soc. Opt. Eng., 6681 Acosta-Maeda, 2016, Remote Raman measurements of minerals, organics, and inorganics at 430 m range, Appl. Opt., 55, 10283, 10.1364/AO.55.010283 Misra, 2018, A two components approach for long range remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy using low laser pulse energy, Appl. Spectrosc. Carroll, 2015, Eye-safe uv stand-off Raman spectroscopy for the ranged detection of explosives in the field, J. Raman Spectrosc., 46, 333, 10.1002/jrs.4642 Chen, 2007, Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse, Appl. Spectrosc., 61, 624, 10.1366/000370207781269756 Shoute, 2002, UV Raman spectroscopy of oilsands-derived bitumen and commercial petroleum products, Appl. Spectrosc., 56, 1308, 10.1366/000370202760354777 Hufziger, 2017, Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection, Appl. Spectrosc., 71, 173, 10.1177/0003702816680002 Bunkin, 2014, Ice thickness measurements by Raman scattering, Opt. Lett., 39, 2573, 10.1364/OL.39.002573 Misra, 2012, Portable standoff raman system for fast detection of homemade explosives through glass, plastic, and water, 10.1117/12.919647 Pilkington, 2017, Multiplex coherent anti-stokes Raman scattering spectroscopy for trace chemical detection, Appl. Opt., 56, B159, 10.1364/AO.56.00B159 Pattabhiramayya, 1938, A study of the Raman effect in sodium nitrate, Proc. Indian Acad. Sci. - Sect. A, 7, 229, 10.1007/BF03045485 Aliev, 2003, Raman study of aqueous sodium nitrate, activated by the high-voltage pulsed electric discharge, Chem. Phys. Lett., 378, 155, 10.1016/S0009-2614(03)01263-6 Aung, 2014, A new noise-reduction filter with sliding mode and low-pass filtering, Control Appl. IEEE, 1029 Brandt, 2006, Optimization of the rolling-circle filter for Raman background subtraction, Appl. Spectrosc., 60, 288, 10.1366/000370206776342553 2008 Naboulsi, 2004, Fog attenuation prediction for optical and infrared waves, Opt. Eng., 43, 319, 10.1117/1.1637611 Kim, 2001, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications, Proc. SPIE – Int. Soc. Opt. Eng., 4214, 26 Flecker, 2006, Results of attenuation measurements for optical wireless channels under dense fog conditions regarding different wavelengths, Proc. SPIE – Int. Soc. Opt. Eng., 6303