Performance Analysis and Mass Estimation of a Small-Sized Liquid Rocket Engine with Electric-Pump Cycle
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kwak HD, Kwon S, Choi CH (2018) Performance assessment of electrically driven pump-fed LOX/kerosene cycle rocket engine: comparison with gas generator cycle. Aerosp Sci Technol 77:67–82
Kim J, Lee S, Lim S, Oh S (2010) Development trend and prospect of upper stage engines. In: 2010 KSPE fall conference 2010, pp 807–808
Jang YH, Lee KH (2015) A development trend study of bipropellant rocket engine for orbit transfer and attitude control of satellite. J Korean Soc Propuls Eng 19(1):50–60
Ki W, Lee J, Huh H (2019) Fundamental experimental setup of an electric-pump cycle for space propulsion systems. In: KSPE Fall conference 2019, pp 59–60
Schneider S, Veres J, Hah C, Nerone A, Cunningham C, Kraft T, Tavernelli P, Fraser B (2005) Satellite propellant pump research. In: 41st AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, Tucson, AZ, USA, 2005, p 3560
Vaughan D, Nakazono B, Karp A, Shotwell R, London A, Mehra A, Mechentel F (2016) Technology development and design of liquid bi-propellant mars ascent vehicles. In: 2016 IEEE aerospace conference, Big Sky, MT, USA, 2016, pp 1–12
Talik J, Luce J, Froelich JC, Shang M, Rasheed RM, Roland JS (2017) Electric propellant feed-system for amateur class high altitude sounding rockets. In: AIAA SPACE and astronautics forum and exposition, Orlando, FL, USA, 2017, p 5132
Dlugiewicz L, Kolowrotkiewicz J, Szelag W, Slusarek B (2012) Permanent magnet synchronous motor to drive propellant pump. In: Electrical drives, automation and Motion, Sorrento, Italia, international symposium on power electronics, pp 822–826
Shimagaki M, Nagao N, Kawasaki S, Kimura T, Hashimoto T, Takada S, Tomita T, Ikeda H, Tanio Y, Barada T, Matake K, Watanabe H, Honda S (2019) Feasibility of rocket engine propellant supply electric pump. In: JAXA-RM-18-014, 2019
Spiller D, Stabile A, Lentini D (2013) Design and testing of a demonstrator electric-pump feed system for liquid propellant rocket engines. Aerotec Missili Spazio 92(3–4):123–130
Soldà N, Lentini D (2008) Opportunities for a liquid rocket feed system based on electric pumps. J Propuls Power 24(6):1340–1346
Rachov PP, Tacca H, Lentini D (2013) Electric feed systems for liquid-propellant rockets. J Propuls Power 29(5):1171–1180
Henderson JB, Goodzeit NE (2010) U.S. Patent No. 7,762,498. Washington, DC: U.S. Patent and Trademark Office, 2010
Waxenegger-Wilfing G, Hahn RHS, Deeken J (2018) Studies on electric pump-fed liquid rocket engines for micro-launchers. In: Proceedings of the space propulsion conference, Seville, Spain, 2018, pp 14–18
Lee J, Roh TS, Lee HJ (2019) Research trend on rocket engine modeling with propellant supply system. In: KSPE spring conference 2019, pp 218–220
Lee S, Lim T, Roh TS (2015) Development of a system analysis program for a liquid rocket engine. J Mech Sci Technol 29(6):2375–2380
Larson WJ, Henry GN, Humble RW (1995) Space propulsion analysis and design. McGraw-Hill, New York
Tizón JM, Román A (2017) A mass model for liquid propellant rocket engines. In: 53rd AIAA/SAE/ASEE Joint propulsion conference, 2017, p 5010
API, RP (1991) 14E: Recommended practice for design and installation of offshore production platform piping systems. API, Washington, DC
Munson BR, Okiishi TH, Huebsch WW, Rothmayer AP (2013) Fluid mechanics. Wiley, Singapore
Lim T, Lee S, Roh TS (2012) Pipe network analysis for liquid rocket engine with gas-generator cycle. In: KSPE spring conference 2012, pp 52–57
Yuznoye (2020) Catalogue of special purpose automatic equipment units. (Unpublished)
Lee J, Cha SW, Ha D, Kee W, Lee J, Huh H, Roh TS, Lee HJ (2019) Research trend analysis on modeling and simulation of liquid propellant supply system. J Korean Soc Propuls Eng 23(6):39–50
Antonio C (2014) Design of a centrifugal pump for an expander cycle rocket engine. Università degli Studi della Basilicata, Master degree
Xu C, Amano RS (2012) Empirical design considerations for industrial centrifugal compressors. Int J Rotating
Sobin AJ, Bissel WR (1974) Turbopump systems for liquid rocket engines. National Aeronautics and Space Administration, Washington, DC
McHugh B (1995) Numerical analysis of existing liquid rocket engines as a design process starter. In: AIAA, ASME, SAE, and ASEE, joint propulsion conference and exhibit, 31st, San Diego, CA, 1995
Matmatch (2019) https://matmatch.com/blog/metals-in-space-how-superalloys-changed-the-rocket-landscape/. Accessed 7 June 2020
Huang DH, Huzel DK (1992) Modern engineering for design of liquid-propellant rocket engines. American Institute of Aeronautics and Astronautics, Reston
Edwards AC, Sumer S (2005) “MIT Rocket Team LOX Tank”. Massachusetts Institute of Technology Department of Aeronautics and Astronautics, 2005, pp 1–39
Bojko M, Kozubková M (2018) Investigation of hydraulic fitting losses. In: MATEC web of conferences, vol 168, EDP sciences, 2018
Ki W, Lee J, Lee H, Roh TS, Huh H (2020) Overseas research trends of an electric-pump cycle for application in upper-stage propulsion systems. J Korean Soc Propuls Eng 24(1):64–77
Vishan Motor (2020) http://www.vishanmotor.com/. Accessed 7 June 2020
Amicell (2020) https://www.amicell.co.il/batteries/rechargeable-batteries/li-polymer-batteries/. Accessed 7 June 2020