Perfect crystals of quantum affine Lie algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
[K1] M. Kashiwara, <i>Crystalizing the $q$-analogue of universal enveloping algebras</i>, Comm. Math. Phys. <b>133</b> (1990), no. 2, 249–260.
[K2] M. Kashiwara, <i>Bases cristallines</i>, C. R. Acad. Sci. Paris Sér. I Math. <b>311</b> (1990), no. 6, 277–280.
[ABF] G. E. Andrews, R. J. Baxter, and P. J. Forrester, <i>Eight-vertex $\mathrm{SOS}$ model and generalized Rogers-Ramanujan-type identities</i>, J. Statist. Phys. <b>35</b> (1984), no. 3-4, 193–266.
[B] R. J. Baxter, <i>Exactly solved models in statistical mechanics</i>, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982.
[D] V. G. Drinfeld, <i>Hopf algebra and the Yang-Baxter equation</i>, Sov. Math. Dokl. <b>32</b> (1985), 254–258.
[J1] M. Jimbo, <i>A $q$-difference analogue of $U({\germ g})$ and the Yang-Baxter equation</i>, Lett. Math. Phys. <b>10</b> (1985), no. 1, 63–69.
[J2] M. Jimbo, <i>Introduction to the Yang-Baxter equation</i>, Internat. J. Modern Phys. A <b>4</b> (1989), no. 15, 3759–3777.
[JMMO] M. Jimbo, K. C. Misra, T. Miwa, and M. Okado, <i>Combinatorics of representations of $U\sb q(\widehat{{\germ s}{\germ l}}(n))$ at $q=0$</i>, Comm. Math. Phys. <b>136</b> (1991), no. 3, 543–566.
[K3] M. Kashiwara, <i>Crystallizing the $q$-analogue of universal enveloping algebras</i>, to appear in Proceedings of the International Congress of Mathematicians, Kyoto, 1991.
[K4] M. Kashiwara, <i>On crystal bases of the $Q$-analogue of universal enveloping algebras</i>, Duke Math. J. <b>63</b> (1991), no. 2, 465–516.
[Kac] V. G. Kac, <i>Infinite-dimensional Lie algebras</i>, Cambridge University Press, Cambridge, 1990.
[KMN2]<sup>1</sup> S.-J. Kang, M. Kashiwara, C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki, <i>Affine crystals and vertex models</i>, Internat. J. Modern Phys. A <b>7</b> (1992), 449–484, (Suppl. 1A: Infinite Analysis, Proceedings, RIMS Research Project 1991, Kyoto Univ.).
[KMN2]<sup>2</sup> S.-J. Kang, M. Kashiwara, C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki, <i>Vertex models and crystals</i>, to appear in C. R. Acad. Sci. Paris Sér. I Math.
[KN] M. Kashiwara and T. Nakashima, <i>Crystal graphs for representations of the $q$-analogue of classical Lie algebras</i>, RIMS-767.
[L] G. Lusztig, <i>Quantum deformations of certain simple modules over enveloping algebras</i>, Adv. in Math. <b>70</b> (1988), no. 2, 237–249.
[MM] K. Misra and T. Miwa, <i>Crystal base for the basic representation of $U\sb q(\germ s\germ l(n))$</i>, Comm. Math. Phys. <b>134</b> (1990), no. 1, 79–88.