Percolation of entropy functionals on cayley tree graphs as a method of order-disorder character diagnostics of complex structures

Allerton Press - Tập 73 - Trang 1269-1276 - 2009
V. V. Yudin1, P. L. Titov1, A. N. Mikhalyuk1
1Far-Eastern State University, Vladivostok, Russia

Tóm tắt

The problem of long-range action identification of classical quartet, honeycomb, and simplex lattices and bihexagonal Duneau-Katz lattice has been solved. The percolation problem is considered in terms of entropy functional on Cayley tree graphs. Long-range order is described not only by hyperbolic percolation entropy dependence with γ ≤ 1 and zero-order asymptotic entropy; the residual entropy of system ordering can also be observed in some cases.

Tài liệu tham khảo

Gusev, A.I., Nestekhiometriya, besporyadok, blizhnii i dal’nii poryadok v tverdom tele (Nonstoichiometry, Disorder, and Short- and Long-Range Order in Solids), Moscow: Fizmatlit, 2007. Kleman, M. and Lavrentovich, O.D., Osnovy fiziki chastichno uporyadochennykh sred (Principles of the Physics of Partially Ordered Media), Moscow: Fizmatlit, 2007. Medvedev, N.N., Metod Voronogo-Delone v issledovanii struktury nekristallicheskikh sistem (The Voronoi-Delone Method in Study of the Structure of Noncrystalline Systems), Novosibirsk: Izd-vo SO RAN NITs OIGGM, 2000. Gratia, D., Usp. Fiz. Nauk, 1988, vol. 156, no. 2, p. 347. Bratkovskii, A.M., Danilov, Yu.A., and Kuznetsov, G.I., Fiz. Met. Metalloved., 1989, vol. 68, no. 6, p. 1045. Yudin, V.V., Stokhasticheskaya magnitnaya struktura plenok s mikroporovoi sistemoi (Stochastic Magnetic Film Structure with a Microporous System), Moscow: Nauka, 1987. Yudin, V.V., Pisarenko, T.A., Lyubchenko, E.A., and Savchuk, E.A., Kristallografiya, 1999, vol. 44, no. 3, p. 413 [Crystallogr. Rep. (Engl. Transl.), vol. 44, no. 3, p. 373]. Yudin, V.V. et al., Kristallografiya, 2002, vol. 47, no. 2, p. 224 [Crystallogr. Rep. (Engl. Transl.), vol. 47, no. 2, p. 189]. Yudin, V.V., Pisarenko, T.A., and Lyubchenko, E.A., Informodinamika setevykh struktur. Veroyatnost’. Drevesnye grafy. Fraktaly (Infodynamics of Network Structures. Probability. Tree Graphs. Fractals), Vladivostok: Izd-vo DVGU, 2003. Lyubchenko, E.A., Cayley Tree Graphs in the Study of Grid Structures of Mesoscopic Defects in Quartz Glasses, Cand. Sci. (Phys.-Math.) Dissertation, Vladivostok, 1999. Pisarenko, T.A., Fractality of Grid Systems of Mesoscopic Defects in Metallic and Quartz Glasses in the Spectral and Tree-Graph Representation, Cand. Sci. (Phys.-Math.) Dissertation, Vladivostok, 2000. Chudnova, O.A., Comparative Infodynamical Analysis of Classical Lattices and the Bihexagonal Duneau-Katz Lattice, Cand. Sci. (Phys.-Math.) Dissertation, Vladivostok, 2004. Polyanskii, D.A., Theoretical Information Analysis of the Minimum Class of Quasicrystalline Structures, Cand. Sci. (Phys.-Math.) Dissertation, Vladivostok, 2005. Shchegoleva, S.A., Effect of γ-Radiation Fields on Hyperfine Amorphous Coatings, Cand. Sci. (Phys.-Math.) Dissertation, Vladivostok, 2000. Yudin, V.V., Pisarenko, T.A., Lyubchenko, E.A., and Chudnova, O.A., Izv. Ross. Akad. Nauk, Ser. Fiz., 2001, vol. 65, no. 10, p. 1405. Casti, J., Connectivity, Complexity, and Catastrophe in Large-Scale Systems, London: Wiley, 1979. Aizerman, M.A., et al. Sb. nauch. tr. Issledovaniya po teorii struktur (Collected Sci. Works: Study on the Theory of Structures), Moscow: Nauka, 1988, p. 5. Harary, F. and Palmer, E.M., Graphical Enumeration, New York: Academic, 1973. Bongard, M.M., Problemy uznavaniya (Recognition Problems), Moscow: Nauka, 1967. Kullback, S., Information Theory and Statistics, New York: Dover, 1968. Galiulin, R.V., Usp. Fiz. Nauk, 2002, vol. 172, no. 2, p. 228. Penrose, R., The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, New York: Oxford University Press, 1990. Shubnikov, A.V. and Koptsik, V.A., Simmetriya v nauke i iskusstve (Symmetry in Science and Art), Moscow: Nauka, 1972. Stephens, P.V. and Goldman, A.I., Sci. Am., 1991, no. 6, p. 19.