Perceived chances for promotion among women associate professors in computing: individual, departmental, and entrepreneurial factors
Tóm tắt
This article expands understanding of gender and advancement in academic science by going into a new dimension of inquiry: Focusing on women associate professors in computing, it assesses the relationship between perceived chances for promotion to full professor and indicators of entrepreneurship, as part of key sets of individual and departmental independent variables that are also addressed. Data from a national survey of women in academic computing indicate that time spent in entrepreneurial activity does not predict excellent/good (compared to fair/poor) chances for promotion perceived by these women faculty, nor does the quantity/quality of entrepreneurial activity that they report for their home units. Departmental reward structures reported as favoring entrepreneurial activity negatively predict perceived chances for promotion. Other key individual and departmental characteristics also predict chances for promotion: faculty members’ age, collaboration, family characteristics, departmental climate, and US (compared to Canadian) location. Findings from interviews with a small subset of respondents to the survey illuminate the survey findings on the role of entrepreneurial factors in perceived chances for advancement.
Tài liệu tham khảo
Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48, 44–60.
Allison, P., & Long, J. S. (1990). Departmental effects on scientific productivity. American Sociological Review, 55, 469–478.
Argyes, N., & Liebeskind, J. P. (1998). Privatizing the intellectual commons. Journal of Economic Behavior & Organization, 35, 427–454.
Balka, E., & Smith, R. (2000). Women, work and computerization: Charting a course to the future. Boston: Kluwer.
Bayer, A. E., & Smart, J. C. (1991). Career publication patterns and collaborative ‘styles’ in American Academic Science. The Journal of Higher Education, 62, 613–636.
Bercovitz, J., & Feldman, M. (2008). Academic entrepreneurs: Organizational change at the individual level. Organization Science, 19, 69–89.
Blackburn, R., & Lawrence, J. (2002). Faculty at work. Baltimore: Johns Hopkins University Press.
Blau, P. (1973). The organization of academic work. New York: Wiley.
Bradley, R. T. (1982). Ethical problems in team research: A structural analysis and an agenda for resolution. The American Sociologist, 17, 87–94.
Breschi, S., Lissoni, F., & Montobbio, F. (2007). The scientific productivity of academic inventors: New evidence from Italian data. Economics of Innovation and New Technology, 16, 101–118.
Breschi, S., Lissoni, F., & Montobbio, F. (2008). University patenting and scientific productivity: A quantitative study of Italian academic inventors. European Management Review, 5, 91–100.
Britton, D. (2010). Engendering the university through policy and practice: Barriers to promotion to full professor for women in the science, engineering, and math disciplines. In B. Riegraf, B. Aulenbacher, E. Kircsh-Auwarter, & U. Muller (Eds.), GenderChange in academia: Remapping the fields of work, knowledge, and politics from a gender perspective. Wiesbaden: VS Verlag.
Bronstein, P., & Farnsworth, L. (1998). Gender differences in faculty experiences of interpersonal climate and processes for advancement. Research in Higher Education, 39, 557–585.
Callister, R. (2006). Impact of gender and department climate on job satisfaction and intentions to quit for faculty in science and engineering fields. Journal of Technology Transfer, 31, 367–375.
Cole, J., & Zuckerman, H. (1987). Marriage, motherhood, and research performance in science. Scientific American, 255, 119–125.
Colyvas, J., Snellman, K., Bercovitz, J., & Feldman, M. (2011). Disentangling effort and performance: A renewed look at gender differences in commercializing medical school research. Journal of Technology Transfer (forthcoming).
Commission on Professionals in Science and Technology (CPST). (2008). Professional women and minorities: A total human resources data compendium (17th ed.). Washington, DC: CPST.
Computing Research Association. (2011). Taulbee surveys on-line at: http://www.cra.org/statistics/.
Dillman, D. (2000). Mail and internet surveys. New York: Wiley.
Ding, W., Murray, F., & Stuart, T. (2006). Gender differences in patenting in the academic life sciences. Science, 313, 665–667.
Fairweather, J. (1993). Faculty reward structures: Toward institutional and professional homogenization. Research in Higher Education, 34, 603–623.
Fox, M. F. (2003). Gender, faculty, and doctoral education in science and engineering. In L. Hornig (Ed.), Equal rites, unequal outcomes: Women in American Research Universities. Boston: Kluwer Academic/Plenum Publishers.
Fox, M. F. (2005). Gender, family characteristics, and publication productivity among scientists. Social Studies of Science, 35, 131–150.
Fox, M. F. (2008). Institutional transformation and the advancement of women faculty: The case of academic science and engineering. In J. Smart (Ed.), Higher education: Handbook of theory and research (Vol. 23). Berlin: Springer.
Fox, M. F., & Colatrella, C. (2006). Participation, performance, and advancement of women in academic science and engineering: What is at issue and why. Journal of Technology Transfer, 31, 377–386.
Fox, M. F., & Mohapatra, S. (2007). Social-organizational characteristics of work and publication productivity among academic scientists in doctoral-granting departments. The Journal of Higher Education, 78, 542–571.
Kenney, M., & Goe, W. R. (2004). The role of embeddedness in professorial entrepreneurship. Research Policy, 33, 691–707.
Krueger, N., Reilly, M., & Carsrud, A. (2000). Computing models of entrepreneurial intentions. Journal of Business Venturing, 15, 411–432.
Long, J. S., Allison, P. D., & McGinnis, R. (1993). Rank advancement in academic careers: Sex differences in the effects of productivity. American Sociological Review, 703–722.
Long, J. S., & Fox, M. F. (1995). Scientific careers: Universalism and particularism. Annual Review of Sociology, 21, 45–71.
Long, J. S., & McGinnis, R. (1981). Organizational context and scientific productivity. American Sociological Review, 46, 422–442.
Moed, H. E., & Visser, M. (2007). Developing bibliometric indicators of research performance in computer science. Research Report to the Council for Physical Sciences of the Netherlands Organisation for Scientific Research.
Nakhaie, M. R. (2007). Universalism, ascription, and academic rank: Canadian professors, 1987–2000. Canadian Review of Sociology and Anthropology, 44, 361–387.
National Academy of Sciences, Committee on Maximizing the Potential of Women in Academic Science and Engineering. (2007). Beyond bias and barriers: Fulfilling the potential of women in academic science and engineering. Washington, DC: National Academy Press.
Owen-Smith, J., & Powell, W. (2001). Careers and contradictions: Faculty responses to the transformation of knowledge and its uses in the life sciences. Research in the Sociology of Work, 10, 109–140.
Park, A. (1992). Women, men, and the academic hierarchy: Exploring the relationship between rank and sex. Oxford Review of Education, 18(3), 227–239.
Pelz, D., & Andrews, F. (1976). Scientists in organizations: Productive climates for research and development. Ann Arbor, Michigan: Institute for Social Research.
Platt, J. (2002). The history of the interview. In J. Gurbrium & J. A. Holstein (Eds.), Handbook of interview research. Thousand Oaks, California: Sage.
Powell, W., & Owen-Smith, J. (1998). Universities and the market for intellectual property in the life sciences. Journal of Policy Analysis and Management, 17, 253–277.
Rosenfeld, R. (1981). Academic men and women’s career mobility. Social Science Research, 10, 337–363.
Slaughter, S., & Leslie, L. (1997). Academic capitalism: Politics, policies, and the entrepreneurial university. Baltimore: The Johns Hopkins University Press.
Slaughter, S., & Rhoades, G. (2004). Academic capitalism and the new economy: Markets, state, and higher education. Baltimore: The Johns Hopkins University Press.
Stephan, P., & El-Ganainy, A. (2007). The entrepreneurial puzzle: Explaining the gender gap. Journal of Technology Transfer, 32, 475–487.
Stephan, P., Gurmu, S., Sumell, A. J., & Black, G. (2007). Who’s patenting in the university? Economics of Innovation and New Technology, 16, 71–99.
Stewart, A., Malley, J., & LaVaque-Manty, D. (2007). Transforming science and engineering: Advancing academic women. Ann Arbor, Michigan: The University of Michigan Press.
Stuart, T., & Ding, W. (2006). When do scientists become entrepreneurs? American Journal of Sociology, 112, 86–144.
Thursby, J., & Thursby, M. (2005). Gender patterns of research and licensing activity of science and engineering faculty. Journal of Technology Transfer, 30, 343–353.
Tien, F., & Blackburn, R. (1996). Faculty rank system, research motivation, and faculty research productivity. The Journal of Higher Education, 67, 2–22.
Wagner, A., McElligott, J., Chan, L., Wagner, E., Segal, N., & Gerber, L. (2007). How gender impacts career development and leadership in rehabilitation medicine. Archives of Physical Medicine and Rehabilitation, 88, 560–568.
Weber, M. (1905). The protestant ethic and the spirit of capitalism. Translated by T. Parsons, A. Giddens. London and Boston: Unwin Hyman, 1905)/1930.
Whittington, K. B. (2011). Mothers of invention? Gender, motherhood, and new dimensions of productivity in the science profession. Work and Occupations, 38, 417–456.
Whittington, K. B., & Smith-Doerr, L. (2008). Women inventors in context. Gender & Society, 22, 194–218.
Xie, Y., & Shauman, K. (2003). Women in science: Career processes and outcomes. Cambridge: Harvard University Press.