Perbrominated Sulfonium-Substituted closo-Decaborates with exo-Polyhedral Amino Groups [2-B10Br9S((CH2)nNH2)2]– (n = 1–3)

Russian Journal of Inorganic Chemistry - Tập 65 - Trang 1333-1342 - 2020
A. V. Golubev1, A. S. Kubasov1, E. S. Turyshev1, A. Yu. Bykov1, K. Yu. Zhizhin1,2, N. T. Kuznetsov1
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Russian University of Technology, Moscow, Russia

Tóm tắt

A method for preparing fully brominated sulfonium derivatives of the closo-decaborate anion with functional amino groups (n-Bu4N)[2-B10Br9S((CH2)nNH2)2]– (n = 1–3) has been developed. The method is based on the interaction between sulfonium derivatives of the closo-decaborate anion with phthalimide groups (n-Bu4N)[2-B10Br9S((CH2)npht)2]– (n = 1–3) and elemental bromine in acetonitrile in an inert atmosphere, followed by removal of the phthalimide protection using methylamine.

Tài liệu tham khảo

V. V. Avdeeva, I. N. Polyakova, A. V. Churakov, et al., Polyhedron 162, 65 (2019). https://doi.org/10.1016/j.poly.2019.01.051 V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 65, 335 (2020). https://doi.org/10.1134/S003602362003002X V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Polyhedron 105, 205 (2016). https://doi.org/10.1016/j.poly.2015.11.049 I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Collect. Czech. Chem. Commun. 75, 1149 (2010). https://doi.org/10.1135/cccc2010054 E. Yu. Matveev, S. S. Akimov, A. S. Kubasov, et al., Russ. J. Inorg. Chem. 64, 1513 (2019). https://doi.org/10.1134/S003602361912009X V. V. Avdeeva, I. N. Polyakova, A. V. Vologzhanina, et al., Polyhedron 123, 396 (2017). https://doi.org/10.1016/j.poly.2016.12.009 A. M. Spokoyny, C. W. Machan, D. J. Clingerman, et al., Nature Chem. 3, 590 (2011). https://doi.org/10.1038/nchem.1088 A. S. Kubasov, E. Yu. Matveev, E. S. Turyshev, et al., Dokl. Chem. 477, 257 (2017). https://doi.org/10.1134/S0012500817110088 X. Zhang, H. Dai, H. Yan, et al., J. Am. Chem. Soc. 138, 4334 (2016). https://doi.org/10.1021/jacs.6b01249 V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 62, 1673 (2017). https://doi.org/10.1134/S0036023617130022 K. Yu. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019 A. S. Kubasov, E. Yu. Matveev, V. M. Retivov, et al., Russ. Chem. Bull. 63, 187 (2014). https://doi.org/10.1007/s11172-014-0412-2 V. V. Drozdova, M. V. Lisovskii, I. N. Polyakova, et al., Russ. J. Inorg. Chem. 51, 1716 (2006). https://doi.org/10.1134/S00360236061100664 V. V. Avdeeva, E. A. Malinina, K. Yu. Zhizhin, et al., Russ. J. Inorg. Chem. 65, 514 (2020). A. P. Zhdanov, V. V. Voinova, I. N. Klyukin, et al., Russ. J. Coord. Chem. 45, 563 (2019). https://doi.org/10.1134/S1070328419080098 E. A. Malinina, I. K. Kochneva, V. V. Avdeeva, et al., Russ. J. Inorg. Chem. 64, 1210 (2019). https://doi.org/10.1134/S0036023619100085 A. V. Shmal’ko and I. B. Sivaev, Russ. J. Inorg. Chem. 64, 1726 (2019). https://doi.org/10.1134/S0036023619140067 W. Gu and O. V. Ozerov, Inorg. Chem. 50, 2726 (2011). https://doi.org/10.1021/ic200024u V. Geis, K. Guttsche, C. Knapp, et al., Dalton Trans. 15, 2649 (2009). https://doi.org/10.1039/B821030F J. Warneke, S. Z. Konieczka, G.-L. Hou, et al., Phys. Chem. Chem. Phys. 21, 5903 (2019). https://doi.org/10.1039/c8cp05313h J. Holub, S. El. Anwar, T. Jelinek, et al., Inorg. Chem. 38, 4499 (2017). https://doi.org/10.1002/ejic.201700651 E. A. Kravchenko, A. A. Gippius, A. A. Korlyukov, et al., Inorg. Chim. Acta 447, 22 (2016). https://doi.org/10.1016/j.ica.2016.03.025 M. Sharma, D. Sethio, DakuL. M. Lawson, et al., J. Phys. Chem. A 123, 1807 (2019). https://doi.org/10.1021/acs.jpca.8b11638 A. S. Kubasov, E. S. Turishev, I. N. Polyakova, et al., J. Organomet. Chem. 828, 106 (2017). https://doi.org/10.1016/j.jorganchem.2016.11.035 A. S. Kubasov, E. Yu. Matveev, E. S. Turyshev, et al., Dokl. Chem. 483, 263 (2018). https://doi.org/10.1134/S001250081811006X A. S. Kubasov, E. Yu. Matveev, I. N. Polyakova, et al., Russ. J. Inorg. Chem. 60, 198 (2015). https://doi.org/10.1134/S0036023615020084 A. S. Kubasov, E. Yu. Matveev, E. S. Turyshev, et al., Inorg. Chim. Acta 477, 277 (2018). https://doi.org/10.1016/j.ica.2018.03.013 A. S. Kubasov, E. S. Turishev, A. V. Golubev, et al., Inorg. Chim. Acta 507, 119589 (2020). https://doi.org/10.1016/j.ica.2020.119589 APEX2 (V. 2009, 5-1), SAINT (V7.60A), SADABS (2008/1) (Bruker, Madison, WI, 2008–2009). O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726