Peptides as drug delivery vehicles across biological barriers
Tóm tắt
Từ khóa
Tài liệu tham khảo
AC’t Hoen PAC, Jirka SMG, Ten Broeke BR et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631. https://doi.org/10.1016/j.ab.2011.11.005
Agarwal V (2001) Current status of the oral delivery of insulin. Pharm Technol 25:76–90
Agemy L (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Nat Acad Sci 108:17450–17455. https://doi.org/10.1073/pnas.1114518108
Aguirre TAS, Teijeiro-Osorio D, Rosa M et al (2016) Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 106:223–241. https://doi.org/10.1016/j.addr.2016.02.004
Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621. https://doi.org/10.1073/pnas.152463399
Alberici L, Roth L, Sugahara KN et al (2013) De novo design of a tumor-penetrating peptide. Cancer Res 73:804–812. https://doi.org/10.1158/0008-5472.CAN-12-1668
Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227. https://doi.org/10.1016/S1535-6108(02)00051-X
Arap W (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380. https://doi.org/10.1126/science.279.5349.377
Bagri A, Tessier-Lavigne M, Watts RJ (2009) Neuropilins in tumor biology. Clin Cancer Res 15:1860–1864. https://doi.org/10.1158/1078-0432.CCR-08-0563
Bastian SEP, Walton PE, Ballard FJ, Belford DA (1999) Transport of IGF-I across epithelial cell monolayers. J Endocrinol 162:361–369. https://doi.org/10.1677/joe.0.1620361
Bernkop-Schnurch A (1998) The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release 52:1–16. https://doi.org/10.1016/S0168-3659(97)00204-6
Bertrand Y, Currie J-C, Poirier J et al (2011) Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer 105:1697–1707. https://doi.org/10.1038/bjc.2011.427
Bi Y, Liu L, Lu Y et al (2016) T7 Peptide-functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma. ACS Appl Mater Interfaces 8:27465–27473. https://doi.org/10.1021/acsami.6b05572
Boegh M, García-Díaz M, Müllertz A, Nielsen HM (2015) Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation. Eur J Pharm Biopharm 95:136–143. https://doi.org/10.1016/j.ejpb.2015.01.014
Boohaker RJ, Lee MW, Vishnubhotla P et al (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804. https://doi.org/10.2174/092986712801661004
Camenisch G, Alsenz J, Van De Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs lipophilicity and molecular weight. Eur J Pharm Sci 6:313–319. https://doi.org/10.1016/S0928-0987(97)10019-7
Ceramide E, Erdreich-epstein A, Shimada H et al (2000) Integrins αvβ3 and αvβ5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased. Cancer Res 60:712–721
Chen C, Duan Z, Yuan Y et al (2017) Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces 9:5864–5873. https://doi.org/10.1021/acsami.6b15831
Connor Y, Tekleab S, Nandakumar S et al (2015) Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun 6:8671. https://doi.org/10.1038/ncomms9671
Cui Y, Zhang M, Zeng F et al (2016) Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–32169. https://doi.org/10.1021/acsami.6b10175
Cun X, Chen J, Ruan S et al (2015) A novel strategy through combining irgd peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration. ACS Appl Mater Interfaces 7:27458–27466. https://doi.org/10.1021/acsami.5b09391
Curnis F, Gasparri A, Sacchi A et al (2004) Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 64:565–571. https://doi.org/10.1158/0008-5472.Can-03-1753 doi
Curnis F, Sacchi A, Gasparri A et al (2008) Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res 68:7073–7082. https://doi.org/10.1158/0008-5472.CAN-08-1272
Dai W, Fan Y, Zhang H et al (2014) A comprehensive study of iRGD-modified liposomes with improved chemotherapeutic efficacy on B16 melanoma. Drug Deliv 7544:1–11. https://doi.org/10.3109/10717544.2014.903580
De G, Ko J-K, Tan T et al (2014) Amphipathic tail-anchoring peptide is a promising therapeutic agent for prostate cancer treatment. Oncotarget 5:7734–7747. https://doi.org/10.18632/oncotarget.2301
Demeule M, Régina A, Ché C et al (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072. https://doi.org/10.1124/jpet.107.131318
Díaz-Perlas C, Sánchez-Navarro M, Teixidó M, Giralt E (2016) Phage display as a tool to discover BBB-shuttle peptides: panning against a human blood-brain barrier cellular model. J Pept Sci 22:S107. https://doi.org/10.1002/bip.22928
Du R, Zhong T, Zhang WQ et al (2014) Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomed 9:3091–3105. https://doi.org/10.2147/IJN.S65664
Duerr DM, White SJ, Schluesener HJ (2004) Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 116:177–180. https://doi.org/10.1016/j.jviromet.2003.11.012
Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568. https://doi.org/10.1016/S0955-0674(00)00252-0
Fan X, Venegas R, Fey R et al (2007) An in vivo approach to structure activity relationship analysis of peptide ligands. Pharm Res 24:868–879. https://doi.org/10.1007/s11095-007-9238-z
Fievez V, Plapied L, Plaideau C et al (2010) In vitro identification of targeting-ligands of human M cells by phage display. Int J Pharm 394:35–42. https://doi.org/10.1016/j.ijpharm.2010.04.023
Fittipaldi A, Giacca M (2005) Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 57:597–608. https://doi.org/10.1016/j.addr.2004.10.011
Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68:7210–7218. https://doi.org/10.1158/0008-5472.CAN-07-6752
Frey A, Giannasca KT, Weltzin R et al (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045–1059. https://doi.org/10.1084/jem.184.3.1045
Gaillard PJ, Appeldoorn CCM, Dorland R et al (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE. https://doi.org/10.1371/journal.pone.0082331
Gao H, Qian J, Cao S et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33:5115–5123. https://doi.org/10.1016/j.biomaterials.2012.03.058
Gao H, Yang Z, Zhang S et al (2014) Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater 10:858–867. https://doi.org/10.1016/j.actbio.2013.11.003
Georgieva JV, Brinkhuis RP, Stojanov K et al (2012) Peptide-mediated blood-brain barrier transport of polymersomes. Angew Chem Int Ed 51:8339–8342. https://doi.org/10.1002/anie.201202001
Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2:289–295. https://doi.org/10.1038/nrd1067
Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188. https://doi.org/10.1016/0092-8674(88)90262-0
Gu G, Gao X, Hu Q et al (2013) The influence of the penetrating peptide iRGD on the effect of paclitaxel-loaded MT1-AF7p-conjugated nanoparticles on glioma cells. Biomaterials 34:5138–5148. https://doi.org/10.1016/j.biomaterials.2013.03.036
Guixer B, Arroyo X, Belda I et al (2016) Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification. J Pept Sci 22:577–591. https://doi.org/10.1002/psc.2900
Hambley TW WNH (2009) Is anticancer drug development heading in the right direction?. Cancer Res 69:1259–1262. https://doi.org/10.1158/0008-5472.CAN-08-3786
Hamzeh-Mivehroud M, Mahmoudpour A, Rezazadeh H, Dastmalchi S (2008) Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. Eur J Pharm Biopharm 70:577–581. https://doi.org/10.1016/j.ejpb.2008.06.005
Hanahan D, Folkman J (1996) Patterns and emerging mechanisms review of the angiogenic switchduring tumorigenesis. Cell 86:353–364. https://doi.org/10.1016/S0092-8674(00)80108-7
Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813. https://doi.org/10.1038/nrc1456
Higgins LM, Lambkin I, Donnelly G et al (2004) In vivo phage display to identify M cell-targeting ligands. Pharm Res 21:695–705. https://doi.org/10.1023/B:PHAM.0000022418.80506.9a
Hu Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Xia H, Chen H, Jiang X, Gaob X, Chen JQ (2013) F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyP-1 peptide for anti-glioma drug delivery. Biomaterials 34:1135–1145. https://doi.org/10.1016/j.biomaterials.2012.10.048
Hwang SR, Byun Y (2014) Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv 11:1955–1967. https://doi.org/10.1517/17425247.2014.945420
Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658. https://doi.org/10.1146/annurev.bioeng.1.1.241
Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263. https://doi.org/10.1146/annurev.bioeng.1.1.241
Jain RK, Joshi R, Byrav DP et al (2001) Delivery of molecular and cellular medicine to solid tumors1PII of original article: S0169–409X(97)00027 – 6. The article was originally published. Advanced Drug Delivery Reviews 26 (1997) 71–90.1. Adv Drug Deliv Rev 46:149–168. https://doi.org/10.1016/S0169-409X(00)00131-9
Järver P, Mäger I, Langel Ü (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci 31:528–535. https://doi.org/10.1016/j.tips.2010.07.006
Jiang T, Olson ES, Nguyen QT et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872. https://doi.org/10.1073/pnas.0408191101
Jin Y, Song Y, Zhu X et al (2012) Biomaterials Goblet cell-targeting nanoparticles for oral insulin delivery and the in fl uence of mucus on insulin transport. Biomaterials 33:1573–1582. https://doi.org/10.1016/j.biomaterials.2011.10.075
Kamei N, Morishita M, Eda Y et al (2008a) Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release 132:21–25. https://doi.org/10.1016/j.jconrel.2008.08.001
Kamei N, Morishita M, Ehara J, Takayama K (2008b) Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery. J Control Release 131:94–99. https://doi.org/10.1016/j.jconrel.2008.07.016
Kamei N, Morishita M, Takayama K (2009) Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release 136:179–186. https://doi.org/10.1016/j.jconrel.2009.02.015
Kang SK, Woo JH, Kim MK et al (2008) Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol 135:210–216. https://doi.org/10.1016/j.jbiotec.2008.01.021
Kang T, Jiang M, Jiang D et al (2015) Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm 12:2947–2961. https://doi.org/10.1021/acs.molpharmaceut.5b00222
Kannan R, Chakrabarti R, Tang D et al (2000) GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res 852:374–382. https://doi.org/10.1016/S0006-8993(99)02184-8
Karmali PP, Kotamraju VR, Kastantin M et al (2009) Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine Nanotechnology Biol Med 5:73–82. https://doi.org/10.1016/j.nano.2008.07.007
Kauffman B, Fuselier T, He J, Wimley W (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40:749–764. https://doi.org/10.3109/10253890.2015.1094689.Post-Traumatic
Kenngott EE, Cole S, Hein WR et al (2016) Identification of targeting peptides for mucosal delivery in sheep and mice. Mol Pharm 13:202–210. https://doi.org/10.1021/acs.molpharmaceut.5b00635
Khafagy ES, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64:531–539. https://doi.org/10.1016/j.addr.2011.12.014
Kinsella JM, Jimenez RE, Karmali PP et al (2011) X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem Int Ed 50:12308–12311. https://doi.org/10.1002/anie.201104507
Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13:265–270. https://doi.org/10.1038/nbt0395-265
Komin A, Russell LM, Hristova KA, Searson PC (2017) Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev 110–111:52–64. https://doi.org/10.1016/j.addr.2016.06.002
Kompella UB, Lee VHL (2001) Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 46:211–245. https://doi.org/10.1016/S0169-409X(00)00137-X
Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755. https://doi.org/10.1038/nm720
Langguth P, Bohner V, Heizmann J et al (1997) The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release 46:39–57. https://doi.org/10.1016/S0168-3659(96)01586-6
Larhed AW, Artursson P, Gråsjö J, Björk E (1997) Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 86:660–665. https://doi.org/10.1021/js960503w
Larhed AW, Artursson P, Björk E (1998) The influence of intestinal mucus components on the diffusion of drugs. Pharm Res 15:66–71. https://doi.org/10.1023/A:1011948703571
Lee VHL, Yamamoto A (1989) Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev 4:171–207. https://doi.org/10.1016/0169-409X(89)90018-5
Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012. https://doi.org/10.1046/j.1432-1327.2001.02073.x
Li J, Feng L, Fan L et al (2011) Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950. https://doi.org/10.1016/j.biomaterials.2011.03.031
Li J, Zhang Q, Pang Z et al (2012) Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 42:2373–2381. https://doi.org/10.1007/s00726-011-0979-y
Li J, Zhang C, Li J et al (2013) Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res 30:1813–1823. https://doi.org/10.1007/s11095-013-1025-4
Li M, Tang Z, Zhang D et al (2015a) Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 51:161–172. https://doi.org/10.1016/j.biomaterials.2015.02.002
Li X, Wang C, Liang R et al (2015b) The glucose-lowering potential of exenatide delivered orally via goblet cell-targeting nanoparticles. Pharm Res 32:1017–1027. https://doi.org/10.1007/s11095-014-1513-1
Li Y, Zheng X, Gong M, Zhang J (2016) Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. https://doi.org/10.18632/oncotarget.12708
Liang JF, Yang VC (2005) Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun 335:734–738. https://doi.org/10.1016/j.bbrc.2005.07.142
Lindqvist A, Rip J, Van Kregten J et al (2016) In vivo functional evaluation of increased brain delivery of the opioid peptide DAMGO by glutathione-PEGylated liposomes. Pharm Res 33:177–185. https://doi.org/10.1007/s11095-015-1774-3
Lindsay MA (2002) Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2:587–594. https://doi.org/10.1016/S1471-4892(02)00199-6
Liu GW, Livesay BR, Kacherovsky NA et al (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817. https://doi.org/10.1021/acs.bioconjchem.5b00344
Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 106:256–276. https://doi.org/10.1016/j.addr.2016.07.007
Ma H, Yu P, Shen S, Xu B (2014) A dual functional fluorescent probe for glioma imaging mediated by BBB penetration and glioma cell targeting. Biochem Biophys Res Commun 449:44–48. https://doi.org/10.1016/j.bbrc.2014.04.148
Mahmood A, Prüfert F, Efiana NA et al (2016) Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin Drug Deliv 13:1503–1512. https://doi.org/10.1080/17425247.2016.1213236
Malcor JD, Payrot N, David M et al (2012) Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem. https://doi.org/10.1021/jm2014919
Matochko WL, Derda R (2015) Next-generation sequencing of phage-displayed peptide libraries. Methods Mol Biol 1248:249–266. https://doi.org/10.1007/978-1-4939-2020-4_17
Maussang D, Rip J, van Kregten J et al (2016) Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol 20:59–69. https://doi.org/10.1016/j.ddtec.2016.09.003
Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592. https://doi.org/10.1038/nrc1893
Mohamadzadeh M, Duong T, Sandwick SJ et al (2009) Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc Natl Acad Sci 106:4331–4336. https://doi.org/10.1073/pnas.0900029106
Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910. https://doi.org/10.1016/j.drudis.2006.08.005
Morishita M, Morishita I, Takayama K et al (1993) Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol Pharm Bull 16:68–72. https://doi.org/10.1248/bpb.16.68
Morishita M, Kamei N, Ehara J et al (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release 118:177–184. https://doi.org/10.1016/j.jconrel.2006.12.022
Moroz E, Matoori S, Leroux JC (2016) Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev 101:108–121. https://doi.org/10.1016/j.addr.2016.01.010
Murphy EA, Majeti BK, Barnes LA et al (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105:9343–9348. https://doi.org/10.1073/pnas.0803728105
Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022. https://doi.org/10.1016/j.ymthe.2004.08.010
Nguyen J, Hossain SS, Cooke JRN et al (2017) Flow arrest intra-arterial delivery of small TAT-decorated and neutral micelles to gliomas. J Neurooncol 133:1–9. https://doi.org/10.1007/s11060-017-2429-5
Nielsen EJB, Yoshida S, Kamei N et al (2014) In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Control Release 189:19–24. https://doi.org/10.1016/j.jconrel.2014.06.022
Nielsen DS, Shepherd NE, Xu W et al (2017) Orally absorbed cyclic peptides. Chem Rev 117:8094–8128. https://doi.org/10.1021/acs.chemrev.6b00838
O’Neill MJ, Bourre L, Melgar S, O’Driscoll CM (2011) Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 16:203–218. https://doi.org/10.1016/j.drudis.2011.01.003
O’Sullivan CC, Lindenberg M, Bryla C et al (2016) ANG1005 for breast cancer brain metastases: correlation between 18F-FLT–PET after first cycle and MRI in response assessment. Breast Cancer Res Treat 160:51–59. https://doi.org/10.1007/s10549-016-3972-z
Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461. https://doi.org/10.1126/science.1171362
Paasonen L, Sharma S, Braun GB et al (2016) New p32/gC1qR ligands for targeted tumor drug delivery. ChemBioChem 17:570–575. https://doi.org/10.1002/cbic.201500564
Pang H-B, Braun GB, Friman T et al (2014) An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun 5:4904. https://doi.org/10.1038/ncomms5904
Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 6:494–500
Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32:1959–1972. https://doi.org/10.1038/jcbfm.2012.126
Pasqualini R, Ruoslahti E (1996) Organ targeting In vivo using phage display peptide libraries. Nature 380:364–366. https://doi.org/10.1038/380364a0
Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546. https://doi.org/10.1038/nm0798-822
Pasqualini R, Koivunen E, Kain R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727
Pauletti GM, Gangwar S, Knipp GT et al (1996) Structural requirements for intestinal absorption of peptide drugs. J Control Release 41:3–17. https://doi.org/10.1016/0168-3659(96)01352-1
Pelaseyed T, Bergström JH, Gustafsson JK et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260:8–20. https://doi.org/10.1111/imr.12182
Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153. https://doi.org/10.1038/nri3608
Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33. https://doi.org/10.1038/309030a0
Porkka K, Laakkonen P, Hoffman JA et al (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99:7444–7449. https://doi.org/10.1073/pnas.062189599
Prados MD, Schold SC Jr, Fine HA et al (2003) A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol 5:96–103. https://doi.org/10.1215/S1522851702000340
Puig-Saus C, Rojas L, Laborda E et al (2014) iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther 21:767–774. https://doi.org/10.1038/gt.2014.52
Qosa H, Mohamed LA, Alqahtani S et al (2016) Transporters as drug targets in neurological diseases. Clin Pharmacol Ther 100:441–453. https://doi.org/10.1002/cpt.435
Regina A, Demeule M, Tripathy S et al (2015) ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 14:129–140. https://doi.org/10.1158/1535-7163.MCT-14-0399
Régina A, Demeule M, Ché C et al (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197. https://doi.org/10.1038/bjp.2008.260
Ren Y, Cheung HW, von Maltzhan G et al (2012) Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci Transl Med 4:147ra112–147ra112. https://doi.org/10.1126/scitranslmed.3003778
Renukuntla J, Vadlapudi AD, Patel A et al (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030
Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590. https://doi.org/10.1074/jbc.M209548200
Roth L, Agemy L, Kotamraju VR et al (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31:3754–3763. https://doi.org/10.1038/onc.2011.537
Rotman M, Welling MM, Bunschoten A et al (2015) Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release 203:40–50. https://doi.org/10.1016/j.jconrel.2015.02.012
Rousselle C, Clair P, Temsamani J, Scherrmann JM(2002).Improved brain delivery of benzylpenicillin with a peptide-vector-mediated strategy. J Drug Target. 10(4):309–315
Rubas W, Cromwell MEM, Shahrokh Z et al (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 85:165–169. https://doi.org/10.1021/js950267+
Ruoslahti E (1996) Rgd and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. https://doi.org/10.1146/annurev.cellbio.12.1.697
Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90. https://doi.org/10.1038/nrc724
Ruoslahti E (2003) The RGD story: a personal account. Matrix Biol 22:459–465. https://doi.org/10.1016/S0945-053X(03)00083-0
Ruoslahti E (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24:3747–3756. https://doi.org/10.1002/adma.201200454
Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12. https://doi.org/10.1016/j.addr.2016.03.008
Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768. https://doi.org/10.1083/jcb.200910104
Sánchez-Navarro M, Teixidó M, Giralt E (2017) Jumping hurdles: peptides able to overcome biological barriers. Acc Chem Res. https://doi.org/10.1021/acs.accounts.7b00204
Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642
Schmithals C, Köberle V, Korkusuz H et al (2015) Improving drug penetrability with iRGD leverages the therapeutic response to sorafenib and doxorubicin in hepatocellular carcinoma. Cancer Res 75:3147–3154. https://doi.org/10.1158/0008-5472.CAN-15-0395
Schwarze SR (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1573. https://doi.org/10.1126/science.285.5433.1569
Scott Swenson E, Curatolo WJ (1992) (C) Means to enhance penetration. (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Deliv Rev 8:39–92
Sha H, Zou Z, Xin K et al (2015) Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release 200:188–200. https://doi.org/10.1016/j.jconrel.2014.12.039
Shah RB, Ahsan F, Khan MA (2002) Oral delivery of proteins: progress and prognostication. Crit Rev Ther Drug Carrier Syst 19:135–169. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.20
Shen J, Meng Q, Sui H et al (2014) IRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm 11:2579–2591. https://doi.org/10.1021/mp400576f
Shi Y, Jiang X, Zhang L et al (2017) Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci USA 114(7), E1243–E1252 https://doi.org/10.1073/pnas.1621174114
Smith MW, Al-Jayyoussi G, Gumbleton M (2012) Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. Peptides 38:172–180. https://doi.org/10.1016/j.peptides.2012.06.019
Staquicini FI, Ozawa MG, Moya CA et al (2011) Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 121:161–173. https://doi.org/10.1172/JCI44798
Sugahara KN, Teesalu T, Karmali PP et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520. https://doi.org/10.1016/j.ccr.2009.10.013
Sugahara KN, Teesalu T, Karmali PP et al (2010) Coadministration of a tumor-penetrating peptdei enhances the efficacy of cancer drugs. Science 328:1031–1038. https://doi.org/10.1007/s13398-014-0173-7.2
Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci 106:16157–16162. https://doi.org/10.1073/pnas.0908201106
Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol. https://doi.org/10.3389/fonc.2013.00216
Teixidó M, Belda I, Zurita E et al (2005) Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides. J Pept Sci 11:789–804. https://doi.org/10.1002/psc.679
Tian Y, Li S, Song J et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083
Toome K, Willmore AM, Paiste P et al (2017) Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale. https://doi.org/10.1039/C7NR04056C
Tozaki H, Odoriba T, Iseki T et al (1998) Use of protease inhibitors to improve calcitonin absorption from the small and large intestine in rats. J Pharm Pharmacol 50:913–920
Tremmel R, Uhl P, Helm F, Wupperfeld D et al (2016) Delivery of copper-chelating trientine (TETA) to the central nervous system by surface modified liposomes. Int J Pharm 512(1):87–95
Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932. https://doi.org/10.1152/physrev.00001.2003
Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261. https://doi.org/10.1074/jbc.M006701200
Urich E, Schmucki R, Ruderisch N et al (2015) Cargo delivery into the brain by in vivo identified transport peptides. Sci Rep 5:14104. https://doi.org/10.1038/srep14104
Van Rooy I, Cakir-Tascioglu S, Couraud PO et al (2010) Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 27:673–682. https://doi.org/10.1007/s11095-010-0053-6
Van Rooy I, Hennink WE, Storm G et al (2012) Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding. Eur J Pharm Sci 45:330–335. https://doi.org/10.1016/j.ejps.2011.11.015
Vela Ramirez JE, Sharpe LA, Peppas NA (2017) Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2017.04.008
Walter E, Kissel T, Amidon GL (1996) The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv Drug Deliv Rev 20:33–58. https://doi.org/10.1016/0169-409X(95)00129-U
Wang X, Zhen X, Wang J et al (2013) Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials 34:4667–4679. https://doi.org/10.1016/j.biomaterials.2013.03.008
Wang C-FC-F., Sarparanta MP, Mäkilä EM et al (2015a) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–118. https://doi.org/10.1016/j.biomaterials.2015.01.008
Wang J, Yadav V, Smart AL et al (2015b) Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm 12:966–973. https://doi.org/10.1021/mp500809f
Wang L, Hao Y, Li H et al (2015c) Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2330:1–15. https://doi.org/10.3109/1061186X.2015.1025077
Wang Z, Zhao Y, Jiang Y et al (2015d) Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci Rep 5:12651. https://doi.org/10.1038/srep12651
Wang N, Jin X, Guo D et al (2017) Iron chelation nanoparticles with delayed saturation as an effective therapy for parkinson disease. Biomacromol 18:461–474. https://doi.org/10.1021/acs.biomac.6b01547
Wängler C, Nada D, Höfner G et al (2011) In vitro and initial in vivo evaluation of 68 Ga-labeled transferrin receptor (TfR) binding peptides as potential carriers for enhanced drug transport into TfR expressing cells. Mol Imaging Biol 13:332–341. https://doi.org/10.1007/s11307-010-0329-6
Winer I, Wang S, Lee YEK et al (2010) F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res 70:8674–8683. https://doi.org/10.1158/0008-5472.CAN-10-1917
Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11:61–95
Wu Y, Luo X, Liu X et al (2015) Intraperitoneal administration of a Novel TAT-BDNF peptide ameliorates cognitive impairments via modulating multiple pathways in two alzheimer’s rodent models. Sci Rep 5:15032. https://doi.org/10.1038/srep15032
Xia H, Anderson B, Mao Q, Davidson BL (2000) Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 74:11359–11366. https://doi.org/10.1128/jvi.74.23.11359-11366.2000
Yamaguchi S, Ito S, Kurogi-Hirayama M, Ohtsuki S (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J Control Release 262:232–238. https://doi.org/10.1016/j.jconrel.2017.07.037
Yan C, Gu J, Hou D et al (2015) Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier. Drug Dev Ind Pharm 41:617–622. https://doi.org/10.3109/03639045.2014.891127
Yan F, Wu H, Liu H et al (2016) Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release 224:217–228. https://doi.org/10.1016/j.jconrel.2015.12.050
Yao VJ, D’Angelo S, Butler KS et al (2016) Ligand-targeted theranostic nanomedicines against cancer. J Control Release 240:267–286. https://doi.org/10.1016/j.jconrel.2016.01.002
Yoo MK, Kang SK, Choi JH et al (2010) Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 31:7738–7747. https://doi.org/10.1016/j.biomaterials.2010.06.059
Yu KF, Zhang WQ, Luo LM et al (2013) The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation. Int J Nanomed 8:2473–2485. https://doi.org/10.2147/IJN.S46962
Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832. https://doi.org/10.1016/j.addr.2012.10.007
Zhang L, Song L, Zhang C, Ren Y (2012) Improving intestinal insulin absorption efficiency through coadministration of cell-penetrating peptide and hydroxypropyl-β-cyclodextrin. Carbohydr Polym 87:1822–1827. https://doi.org/10.1016/j.carbpol.2011.10.002
Zhang B, Sun X, Mei H et al (2013a) LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34:9171–9182. https://doi.org/10.1016/j.biomaterials.2013.08.039
Zhang C, Wan X, Zheng X et al (2013b) Biomaterials dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’ s disease mice. Biomaterials 35:1–10. https://doi.org/10.1016/j.biomaterials.2013.09.063
Zhang C, Zheng X, Wan X et al (2014) The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release 192:317–324. https://doi.org/10.1016/j.jconrel.2014.07.050
Zhang Q, Zhang Y, Li K et al (2015) A novel strategy to improve the therapeutic efficacy of Gemcitabine for non-small cell lung cancer by the tumor-penetrating peptide iRGD. PLoS ONE. https://doi.org/10.1371/journal.pone.0129865
Zhang Y, Zhai M, Chen Z et al (2017) Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv 24:1045–1055. https://doi.org/10.1080/10717544.2017.1344334
Zhu Z, Xie C, Liu Q et al (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32:9525–9535. https://doi.org/10.1016/j.biomaterials.2011.08.072
Zhu S, Chen S, Gao Y et al (2015) Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and engrailed secretion peptide (Sec). Drug Deliv 0:1–12. https://doi.org/10.3109/10717544.2015.1043472
Zong T, Mei L, Gao H et al (2014) Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm 11:2346–2357. https://doi.org/10.1021/mp500057n
Zupančič O, Bernkop-Schnürch A (2017) Lipophilic peptide character—what oral barriers fear the most. J Control Release 255:242–257. https://doi.org/10.1016/j.jconrel.2017.04.038