Pentose-phosphate pathway disruption in the pathogenesis of Parkinson’s disease
Tóm tắt
Oxidative stress is known to be a key factor in the pathogenesis of Parkinson’s disease (PD). Neuronal redox status is maintained by glucose metabolism via the pentose-phosphate pathway and it is known that disruption of glucose metabolism is damaging to neurons. Accumulating evidence supports the idea that glucose metabolism is altered in PD and dysregulation of the pentose-phosphate pathway in this disease has recently been shown. In this review, we present an overview of the literature regarding neuronal glucose metabolism and PD, and discuss the implications of these findings for PD pathogenesis and possible future therapeutic avenues.
Tài liệu tham khảo
Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., et al., Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study, Lancet Neurol., 2008, 7, 583–590
Surmeier D.J., Guzman J.N., Sanchez-Padilla J., Goldberg J.A., The origins of oxidant stress in Parkinson’s disease and therapeutic strategies, Antioxid. Redox Signal., 2011, 14, 1289–1301
Hurtig H.I., Trojanowski J.Q., Galvin J., Ewbank D., Schmidt M.L., Lee V.M., et al., Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease, Neurology, 2000, 54, 1916–1921
Dias V., Junn E., Mouradian M.M., The role of oxidative stress in Parkinson’s disease, J. Parkinsons Dis., 2013, 3, 461–491
Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B., A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease, J. Neurochem., 1997, 69, 1326–1329
Jenner P., Oxidative stress in Parkinson’s disease, Ann. Neurol., 2003, 53(Suppl. 3), S26–S36, discussion S36–38
Ben-Yoseph O., Boxer P.A., Ross B.D., Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway, Dev. Neurosci., 1994, 16, 328–336
Salvemini F., Franzé A., Iervolino A., Filosa S., Salzano S., Ursini M.V., Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression, J. Biol. Chem., 1999, 274, 2750–2757
Pandolfi P.P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L., Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress, EMBO J., 1995, 14, 5209–5215
Dunn L., Allen G.F., Mamais A., Ling H., Li A., Duberley K.E., et al., Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease, Neurobiol. Aging, 2014, 35, 1111–1115
Bolanos J.P., Heales S.J., Persistent mitochondrial damage by nitric oxide and its derivatives: neuropathological implications, Front. Neuroenergetics, 2010, 2, 1
Herrero-Mendez A., Almeida A., Fernández E., Maestre C., Moncada S., Bolaños J.P., The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1, Nat. Cell Biol., 2009, 11, 747–752
Pellerin L., Magistretti P.J., Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA, 1994, 91, 10625–10629
Tsacopoulos M., Magistretti P.J., Metabolic coupling between glia and neurons, J. Neurosci., 1996, 16, 877–885
Stokes A.H., Hastings T.G., Vrana K.E., Cytotoxic and genotoxic potential of dopamine, J. Neurosci. Res., 1999, 55, 659–665
Graham D.G., Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol., 1978, 14, 633–643
Halliwell B., Gutteridge J.M., The importance of free radicals and catalytic metal ions in human diseases, Mol. Aspects Med., 1985, 8, 89–193
Dexter D.T., Wells F.R., Agid F., Agid Y., Lees A.J., Jenner P., et al., Increased nigral iron content in postmortem parkinsonian brain, Lancet, 1987, 2, 1219–1220
Jenner P., Olanow C.W., Oxidative stress and the pathogenesis of Parkinson’s disease, Neurology, 1996, 47(Suppl. 3), S161–170
Langston J.W., Ballard P.A.Jr., Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, N. Engl. J. Med., 1983, 309, 310
Ramsay R.R., Dadgar J., Trevor A., Singer T.P., Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP, Life Sci., 1986, 39, 581–588
Schapira A.H., Cooper J.M., Dexter D., Jenner P., Clark J.B., Marsden C.D., Mitochondrial complex I deficiency in Parkinson’s disease, Lancet, 1989, 333, 1269
Bolaños J.P., Peuchen S., Heales S.J., Land J.M., Clark J.B., Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes, J. Neurochem., 1994, 63, 910–916
Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al., Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease, Biochem. Biophys. Res. Commun., 1989, 163, 1450–1455
Lindroos M.M., Majamaa K., Tura A., Mari A., Kalliokoski K.K., Taittonen M.T., et al., m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction, Diabetes, 2009, 58, 543–549
Powers W.J., Videen T.O., Markham J., Black K.J., Golchin N., Perlmutter J.S., Cerebral mitochondrial metabolism in early Parkinson’s disease, J. Cereb. Blood Flow Metab., 2008, 28, 1754–1760
Almeida A., Almeida J., Bolaños J.P., Moncada S., Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection, Proc. Natl. Acad. Sci. USA, 2001, 98, 15294–15299
Almeida A., Moncada S., Bolaños J.P., Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway, Nat. Cell Biol., 2004, 6, 45–51
Cohen S.S., Scott D.B., Gluconokinase and the oxidative path for glucose-6-phosphate utilization, Nature, 1950, 166, 781–782
Filosa S., Fico A., Paglialunga F., Balestrieri M., Crooke A., Verde P., et al., Failure to increase glucose consumption through the pentosephosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress, Biochem. J., 2003, 370, 935–943
Borghammer P., Perfusion and metabolism imaging studies in Parkinson’s disease, Dan. Med. J., 2012, 59, B4466
De Rosa A., Criscuolo C., Mancini P., De Martino M., Giordano I.A., Pappatà S., et al., Genetic screening for LRRK2 gene G2019S mutation in Parkinson’s disease patients from Southern Italy, Parkinsonism Relat. Disord., 2009, 15, 242–244
Volonté M.A., Garibotto V., Spagnolo F., Panzacchi A., Picozzi P., Franzin A., et al., Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease, Parkinsonism Relat. Disord., 2012, 18, 770–774
Henchcliffe C., Shungu D.C., Mao X., Huang C., Nirenberg M.J., Jenkins B.G., et al., Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease, Ann. NY Acad. Sci., 2008, 1147, 206–220
Ahmed S.S., Santosh W., Kumar S., Christlet H.T., Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection, J. Biomed. Sci., 2009, 16, 63
Zheng B., Liao Z., Locascio J.J., Lesniak K.A., Roderick S.S., Watt M.L., et al., PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease, Sci. Transl. Med., 2010, 2, 52ra73
Bassil F., Fernagut P.O., Bezard E., Meissner W.G., Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification?, Prog. Neurobiol., 2014, 118C, 1–18
Heales S.J., Davies S.E., Bates T.E., Clark J.B., Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration, Neurochem. Res., 1995, 20, 31–38
Herken H., Neurotoxin-induced impairment of biopterin synthesis and function: initial stage of a Parkinson-like dopamine deficiency syndrome, Neurochem. Int., 1990, 17, 223–238
Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoy-Agid F., et al., Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia, Ann. Neurol., 1994, 36, 348–355
Dexter D.T., Sian J., Rose S., Hindmarsh J.G., Mann V.M., Cooper J.M., et al., Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease, Ann. Neurol., 1994, 35, 38–44
Russell R.L., Siedlak S.L., Raina A.K., Bautista J.M., Smith M.A., Perry G., Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer disease, Arch. Biochem. Biophys., 1999, 370, 236–239
Martins R.N., Harper C.G., Stokes G.B., Masters C.L., Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress, J. Neurochem., 1986, 46, 1042–1045
Meijer A.E., The pentose phosphate pathway in skeletal muscle under patho-physiological conditions. A combined histochemical and biochemical study, Prog. Histochem. Cytochem., 1991, 22, 1–118
Gupte S.A., Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases, Curr. Opin. Investig. Drugs, 2008, 9, 993–1000
Ursini M.V., Parrella A., Rosa G., Salzano S., Martini G., Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress, Biochem. J., 1997, 323, 801–806
Ninfali P., Guidi L., Aluigi G., Biagiotti E., Del Grande P., High glucose-6-phosphate dehydrogenase activity contributes to the structural plasticity of periglomerular cells in the olfactory bulb of adult rats, Brain Res., 1999, 819, 150–154
Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E., Staging of brain pathology related to sporadic Parkinson’s disease, Neurobiol. Aging, 2003, 24, 197–211
Kirby J., Halligan E., Baptista M.J., Allen S., Heath P.R., Holden H., et al., Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS, Brain, 2005, 128, 1686–1706
Cosentino C., Grieco D., Costanzo V., ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair, EMBO J., 2011, 30, 546–555
Davies P., Moualla D., Brown D.R., Alpha-synuclein is a cellular ferrireductase, PLoS One, 2011, 6, e15814
Bendor J.T., Logan T.P., Edwards R.H., The function of alpha-synuclein, Neuron, 2013, 79, 1044–1066
Bellucci A., Collo G., Sarnico I., Battistin L., Missale C., Spano P., Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2/D3 receptor activation, J. Neurochem., 2008, 106, 560–577
Fornai F., Schlüter O.M., Lenzi P., Gesi M., Ruffoli R., Ferrucci M., et al., Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alphasynuclein, Proc. Natl. Acad. Sci. USA, 2005, 102, 3413–3418
Rodriguez-Araujo G., Nakagami H., Hayashi H., Mori M., Shiuchi T., Minokoshi Y., et al., Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway, Cell. Mol. Life Sci., 2013, 70, 1123–1133
Liberatore G.T., Jackson-Lewis V., Vukosavic S., Mandir A.S., Vila M., McAuliffe W.G., et al., Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease, Nat. Med., 1999, 5, 1403–1409
Fountaine T.M., Venda L.L., Warrick N., Christian H.C., Brundin P., Channon K.M., et al., The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons, Eur. J. Neurosci., 2008, 28, 2459–2473
Adamczyk A., Czapski G.A., Kaźmierczak A., Strosznajder J.B., Effect of N-methyl-D-aspartate (NMDA) receptor antagonists on alphasynuclein-evoked neuronal nitric oxide synthase activation in the rat brain, Pharmacol. Rep., 2009, 61, 1078–1085
Adamczyk A., Kaźmierczak A., Czapski G.A., Strosznajder J.B., Alphasynuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxide-dependent activation of caspase-3, FEBS Lett., 2010, 584, 3504–3508
Clancy R.M., Levartovsky D., Leszczynska-Piziak J., Yegudin J., Abramson S.B., Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary, Proc. Natl. Acad. Sci. USA, 1994, 91, 3680–3684
Bolaños J.P., Delgado-Esteban M., Herrero-Mendez A., Fernandez-Fernandez S., Almeida A., Regulation of glycolysis and pentosephosphate pathway by nitric oxide: impact on neuronal survival, Biochim. Biophys. Acta, 2008, 1777, 789–793
Mejías R., Villadiego J., Pintado C.O., Vime P.J., Gao L., Toledo-Aral J.J., et al., Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice, J. Neurosci., 2006, 26, 4500–4508
Opperdoes F.R., Michels P.A., Enzymes of carbohydrate metabolism as potential drug targets, Int. J. Parasitol., 2001, 31, 482–490