Penetration of phospholipid membranes by poly-l-lysine depends on cholesterol and phospholipid composition

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1862 - Trang 183128 - 2020
Amy Gorman1,2, Khondker R. Hossain1, Flemming Cornelius3, Ronald J. Clarke1,4
1School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
2Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
3Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
4The University of Sydney Nano Institute, Sydney, NSW 2006, Australia

Tài liệu tham khảo

Murray, 2002, The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes, Curr. Topics Membr., 52, 277, 10.1016/S1063-5823(02)52012-3 Sigal, 1994, Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids, Proc. Natl. Acad. Sci. U. S. A., 91, 12253, 10.1073/pnas.91.25.12253 Kim, 1994, Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin, Biophys. J., 67, 227, 10.1016/S0006-3495(94)80473-4 Kim, 1994, Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles, J. Biol. Chem., 269, 28214, 10.1016/S0021-9258(18)46916-5 Noguera-Salvà, 2017, Role of the C-terminal basic amino acids and the lipid anchor of the Gγ2 protein in membrane interactions and cell localization, Biochim. Biophys. Acta Biomembr., 1859, 1536, 10.1016/j.bbamem.2017.02.012 Maures, 2011, Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1β to regulate its cellular function and distribution, J. Cell Sci., 124, 1542, 10.1242/jcs.078949 Lei, 2013, Basic residues in the matrix domain and multimerization target murine leukemia virus Gag to the virological synapse, J. Virol., 87, 7113, 10.1128/JVI.03263-12 Diaz, 2018, Evolutionary analysis of the lysine-rich N-terminal cytoplasmic domains of the gastric H+,K+-ATPase and the Na+,K+-ATPase, J. Membr. Biol., 251, 653, 10.1007/s00232-018-0043-x Ptak, 2005, Electrostatic interaction of a K+ channel RCK domain with charged membrane surfaces, Biochemistry, 44, 62, 10.1021/bi048390f Nguyen, 2018, Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes, Biochim. Biophys. Acta – Biomembr., 1860, 1282, 10.1016/j.bbamem.2018.03.002 Jørgensen, 1975, Purification and characterisation of (Na+,K+)-ATPase. 5. Conformational-changes in enzyme transitions between Na-form and K-form studied with tryptic digestion as a tool, Biochim. Biophys. Acta, 401, 399, 10.1016/0005-2736(75)90239-4 Jørgensen, 1982, Structure of the Na,K-pump: crystallization of pure membrane-bound Na,K-ATPase and identification of functional domains of the α-subunit, Ann. N. Y. Acad. Sci., 402, 207, 10.1111/j.1749-6632.1982.tb25743.x Jørgensen, 1986, Tryptic and chymotryptic cleavage sites in sequence of α-subunit of (Na+ + K+)-ATPase from outer medulla of mammalian kidney, Biochim.Biophys. Acta, 860, 570, 10.1016/0005-2736(86)90555-9 Jørgensen, 1988, Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins, J. Membr. Biol., 103, 95, 10.1007/BF01870942 Jiang, 2017, Electrostatic stabilization plays a central role in autoinhibitory regulation of the Na+,K+-ATPase, Biophys. J., 112, 288, 10.1016/j.bpj.2016.12.008 Levine, 1971, Structure of oriented lipid bilayers, Nat. New Biol., 230, 69, 10.1038/newbio230069a0 Yeagle, 1985, Cholesterol and the cell membrane, BBA - Rev. Biomembr., 822, 267 Needham, 1990, Elastic deformation and failure of lipid bilayer membranes containing cholesterol, Biophys. J., 58, 997, 10.1016/S0006-3495(90)82444-9 Schroeder, 1995, Cholesterol domains in biological membranes, Mol. Membr. Biol., 12, 113, 10.3109/09687689509038505 Raffy, 1999, Control of lipid membrane stability by cholesterol content, Biophys. J., 76, 2072, 10.1016/S0006-3495(99)77363-7 Ohvo-Rekilä, 2002, Cholesterol interactions with phospholipids in membranes, Prog. Lipid Res., 41, 66, 10.1016/S0163-7827(01)00020-0 Hung, 2007, The condensing effect of cholesterol in lipid bilayers, Biophys. J., 92, 3960, 10.1529/biophysj.106.099234 de Meyer, 2009, Effect of cholesterol on the structure of a phospholipid bilayer, Proc. Natl. Acad. Sci., 106, 3654, 10.1073/pnas.0809959106 Grouleff, 2015, The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations, Biochim. Biophys. Acta Biomembr., 1848, 1783, 10.1016/j.bbamem.2015.03.029 Papahadjopoulos, 1973, Role of cholesterol in membranes effects on phospholipid-protein interactions, membrane permeability and enzymatic activity, BBA - Biomembr., 330, 8, 10.1016/0005-2736(73)90280-0 Demel, 1977, The preferential interactions of cholesterol with different classes of phospholipids, BBA - Biomembr., 465, 1, 10.1016/0005-2736(77)90350-9 Cooper, 1978, Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells, J. Supramol. Cell. Biochem., 8, 413 Subramaniam, 1987, Critical mixing in monolayer mixtures of phospholipid and cholesterol, J. Phys. Chem., 91, 1715, 10.1021/j100291a010 Klodos, 2002, Large-scale preparation of sodium-potassium ATPase from kidney outer medulla, Kidney Int., 62, 2097, 10.1046/j.1523-1755.2002.00654.x Ottolenghi, 1975, The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish, Biochem. J., 151, 61, 10.1042/bj1510061 Peterson, 1977, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Anal. Biochem., 83, 346, 10.1016/0003-2697(77)90043-4 Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6 Brown, 1993 De Pont, 1978, Role of negatively charged phospholipids in highly purified (Na+ + K+)-ATPase from rabbit kidney outer medulla. Studies on (Na+ + K+)-activated ATPase, XXXIX, Biochim. Biophys. Acta - Biomembr., 508, 464, 10.1016/0005-2736(78)90092-5 Peters, 1981, Studies on (Na+ + K+)-activated ATPase XLIX. Content and role of cholesterol and other neutral lipids in highly purified rabbit kidney enzyme preparation, Biochim. Biophys. Acta - Biomembr., 649, 541, 10.1016/0005-2736(81)90158-9 Edidin, 2003, Lipids on the frontier: a century of cell-membrane bilayers, Nat. Rev. Mol. Cell Biol., 4, 414, 10.1038/nrm1102 Van Meer, 2008, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112, 10.1038/nrm2330 Fadok, 2001, Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts, J. Biol. Chem., 276, 1071, 10.1074/jbc.M003649200 Hankins, 2015, Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution, Traffic., 16, 35, 10.1111/tra.12233 Reuter, 2009, Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane, Biophys. Chem., 144, 27, 10.1016/j.bpc.2009.06.002 Volodkin, 2007, Coating of negatively charged liposomes by polylysine: drug release study, J. Control. Release, 117, 111, 10.1016/j.jconrel.2006.10.021 Volodkin, 2007, Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation, Biochim. Biophys. Acta - Biomembr., 1768, 280, 10.1016/j.bbamem.2006.09.015 Chen, 1988, Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers, Anal. Biochem., 172, 61, 10.1016/0003-2697(88)90412-5 Petrache, 2004, Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt, Biophys. J., 86, 1574, 10.1016/S0006-3495(04)74225-3 McMullen, 2000, Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes, Biophys. J., 79, 2056, 10.1016/S0006-3495(00)76453-8 Phillips, 1972, The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes, Prog. Surf. Membr. Sci., 5, 139, 10.1016/B978-0-12-571805-9.50009-9 Ducharme, 1990, Ellipsometric study of the physical states of phosphatidylcholines at the air-water interface, J. Phys. Chem., 94, 1925, 10.1021/j100368a038 Petrov, 1999, Ellipsometric chain length dependence of fatty acid Langmuir monolayers. A heads-and-tails model, J. Phys. Chem. B, 103, 10.1021/jp984393o Horváth, 2003, Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition, Biosens. Bioelectron., 18, 415, 10.1016/S0956-5663(02)00154-9 Howland, 2007, Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths, Biophys. J., 92, 1306, 10.1529/biophysj.106.097071 Garcia, 2017, The voltage-sensitive dye RH421 detects a Na+,K+-ATPase conformational change at the membrane surface, Biochim. Biophys. Acta - Biomembr., 1859, 813, 10.1016/j.bbamem.2017.01.022