Sự thâm nhập và Độc tính của Vật liệu Nano ở Thực Vật Cao
Tóm tắt
Vật liệu nano (NMs) bao gồm các hạt vô cơ có thành phần kim loại, oxit và muối tồn tại trong tự nhiên và cũng có thể được sản xuất trong phòng thí nghiệm, hoặc các hạt hữu cơ phát sinh chỉ từ phòng thí nghiệm, có ít nhất một kích thước nằm trong khoảng từ 1 đến 100 nm. Tùy thuộc vào hình dạng, kích thước, diện tích bề mặt và điện tích, NMs có những tính chất cơ học, hóa học, điện, và quang khác nhau, khiến chúng trở nên phù hợp cho các ứng dụng công nghệ và y sinh, do đó, chúng ngày càng được sản xuất và điều chỉnh nhiều hơn. Mặc dù có tiềm năng lợi ích, việc sử dụng chúng có thể gây hại cho sức khỏe do khả năng thâm nhập vào cơ thể động vật và thực vật và tương tác với các tế bào. Các nghiên cứu về NMs liên quan đến các công nghệ viên, nhà sinh vật học, nhà vật lý, nhà hóa học và nhà sinh thái học, vì vậy có rất nhiều báo cáo đang làm gia tăng đáng kể mức độ kiến thức, đặc biệt trong lĩnh vực công nghệ nano; tuy nhiên, nhiều khía cạnh liên quan đến sinh học nano vẫn chưa được khám phá, bao gồm cả các tương tác với các phân tử sinh học thực vật. Trong bài tổng quan này, chúng tôi xem xét kiến thức hiện tại về cách mà NMs thâm nhập vào các cơ quan của thực vật và tương tác với các tế bào, nhằm làm sáng tỏ tính phản ứng của NMs và độc tính đối với thực vật. Những điểm này được thảo luận một cách chỉ trích để điều chỉnh sự cân bằng liên quan đến rủi ro đối với sức khỏe của thực vật cũng như cung cấp một số gợi ý cho các nghiên cứu mới về chủ đề này.
Từ khóa
Tài liệu tham khảo
Subbiah, 2010, Nanoparticles: Functionalization and multifunctional applications in biomedical sciences, Curr. Med. Chem., 17, 4559, 10.2174/092986710794183024
Treuel, 2014, Physicochemical characterization of nanoparticles and their behavior in the biological environment, Phys. Chem. Chem. Phys., 16, 15053, 10.1039/C4CP00058G
Onelli, 2008, Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold, J. Exp. Bot., 59, 3051, 10.1093/jxb/ern154
Kong, 2014, Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups, J. Cent. South Univ., 21, 3575, 10.1007/s11771-014-2338-0
Capco, 2014, Transgenerational Effects of NMs, Nanomaterials, Impacts on Cell Biology and Medicine, Volume 811, 235, 10.1007/978-94-017-8739-0_12
Miralles, 2012, Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants, Environ. Sci. Technol., 46, 9224, 10.1021/es202995d
Husen, 2014, Phytosynthesis of nanoparticles: Concept, controversy and application, Nanoscale Res. Lett., 9, 229, 10.1186/1556-276X-9-229
Eichert, 2008, Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surface—Further evidence for a stomatal pathway, Physiol. Plant., 132, 491, 10.1111/j.1399-3054.2007.01023.x
Schreiber, 2005, Polar paths of diffusion across plant cuticles: New evidence for an old hypothesis, Ann. Bot., 95, 1069, 10.1093/aob/mci122
Fleischer, 1999, The pore size of non-Graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II, Plant Physiol., 121, 829, 10.1104/pp.121.3.829
Carpita, 1979, Determination of the pore size of cell walls of living plants, Science, 205, 1144, 10.1126/science.205.4411.1144
Tepfer, 1981, The permeability of plant cell walls as measured by gel filtration chromatography, Science, 213, 761, 10.1126/science.213.4509.761
Asli, 2009, Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport, Plant Cell Environ., 32, 577, 10.1111/j.1365-3040.2009.01952.x
Zwieniecki, 2000, Bordered pit structure and vessel wall surface properties. Implications for embolism repair, Plant Physiol., 123, 1015, 10.1104/pp.123.3.1015
Sperry, 2004, Analysis of circular bordered pit function I. Angiosperm vessels with homogeneous pit membranes, Am. J. Bot., 91, 369, 10.3732/ajb.91.3.369
Pittermann, 2010, The Relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membraneorm and function, Plant Physiol., 15, 1919, 10.1104/pp.110.158824
Eichert, 2008, Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles, Physiol. Plant., 134, 151, 10.1111/j.1399-3054.2008.01135.x
Birbaum, 2010, No evidence for cerium dioxide nanoparticle translocation in maize plants, Environ. Sci. Technol., 44, 8718, 10.1021/es101685f
Kurepa, 2010, Uptake and distribution of ultra-small anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana, Nano Lett., 10, 2296, 10.1021/nl903518f
Wang, W.-N., Tarafdar, J.C., and Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res., 15.
Taran, 2014, Redistribution of elements of metals in plant tissues under treatment by non-ionic colloidal solution of biogenic metal nanoparticles, Nanoscale Res. Lett., 9, 354, 10.1186/1556-276X-9-354
Hong, 2014, Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on Cucumber (Cucumis sativus) plants, Environ. Sci. Technol., 48, 4376, 10.1021/es404931g
Larue, 2014, Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation, J. Hazard. Mater., 261, 98, 10.1016/j.jhazmat.2013.10.053
Larue, 2012, Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed, J. Toxicol. Environ. Health A, 75, 722, 10.1080/15287394.2012.689800
Deng, 2014, Interaction between engineered nanomaterials and agricultural crops: Implications for food safety, J. Zhejiang Univ. Sci. A, 15, 552, 10.1631/jzus.A1400165
Shen, 2010, Induction of programmed cell death in Arabidopsis and rice by single wall carbon nanotubes, Am. J. Bot., 97, 1602, 10.3732/ajb.1000073
Liu, 2009, Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 9, 1007, 10.1021/nl803083u
Giraldo, 2014, Plant nanobionics approach to augment photosynthesis and biochemical sensing, Nat. Mater., 13, 400, 10.1038/nmat3890
Hong, 2005, Effect of nano-TiO2 on photochemical reaction of chloroplast of spinach, Biol. Trace Elem. Res., 105, 1, 10.1385/BTER:105:1-3:269
Wang, 2011, Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana, Plant Cell Environ., 34, 811, 10.1111/j.1365-3040.2011.02284.x
2007, TMA-OH coated magnetic nanoparticles internalized in vegetal tissue, Rom. J. Phys., 52, 395
Wang, 2011, Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne) and pumpkin (Cucurbita mixta) plants, Nanotoxicology, 5, 30, 10.3109/17435390.2010.489206
Parsons, 2010, Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants, Environ. Toxicol. Chem., 29, 1146, 10.1002/etc.146
Lin, 2009, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells, J. Hazard. Mater., 170, 578, 10.1016/j.jhazmat.2009.05.025
Tan, 2009, Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon, 47, 3479, 10.1016/j.carbon.2009.08.018
Santos, 2013, Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems, Aquat. Toxicol., 142–143, 347, 10.1016/j.aquatox.2013.09.001
Bianco, S. Carbon Nanotubes—From Research to Applications, InTech. Available online:http://www.intechopen.com/books/carbon-nanotubes-fromresearch-to-applications/graphene-phytotoxicity-in-the-seedling-stage-of cabbage-tomato-red-spinach-and-lettuce.
Zheng, 2005, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083
2009, Cytogenetical changes induced by β-cyclodextrin coated nanoparticles in plant seeds, Rom. J. Phys., 54, 125
Stampoulis, 2009, White assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 43, 9473, 10.1021/es901695c
Montes, 2011, Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida, Int. J. Nanotechnol., 8, 492, 10.1504/IJNT.2011.040190
Pokhrel, 2013, Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles, Sci. Total Environ., 452–453, 321, 10.1016/j.scitotenv.2013.02.059
Kouhi, 2014, Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations, Toxicol. Environ. Chem., 96, 861, 10.1080/02772248.2014.994517
Rico, 2011, Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 59, 3485, 10.1021/jf104517j
Zhu, 2008, Uptake, translocation, and accumulation of manufactured iron oxide by pumpkin plants, J. Environ. Monit., 10, 713, 10.1039/b805998e
Zhang, 2012, Biotransformation of ceria nanoparticles in cucumber plants, ACS Nano, 6, 9943, 10.1021/nn303543n
Du, 2011, TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, J. Environ. Monit., 13, 822, 10.1039/c0em00611d
Zhao, 2012, Effect of surface coating and organic matter on the uptake of CeO2–NPs by corn plants grown in soil: Insight into the uptake mechanism, J. Hazard. Mater., 225–226, 131, 10.1016/j.jhazmat.2012.05.008
Zhao, 2014, Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil, J. Environ. Sci., 26, 382, 10.1016/S1001-0742(13)60559-8
Canas, 2008, Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 27, 1922, 10.1897/08-117.1
Khodakovskaya, 2011, Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions, Proc. Natl. Acad. Sci. USA, 108, 1028, 10.1073/pnas.1008856108
Wild, 2009, Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants, Environ. Sci. Technol., 43, 290, 10.1021/es900065h
Lin, 2009, Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Small, 5, 1128, 10.1002/smll.200801556
Khodakovskaya, 2009, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 3, 3221, 10.1021/nn900887m
Smirnova, 2011, Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings, Acta Nat., 3, 99, 10.32607/20758251-2011-3-1-99-106
Cifuentes, Z., Custardoy, L., de la Fuente, J.M., Marquina, C., Ibarra, M.R., Rubiales, D., and Alejandro Pérez-de-Luque, A. (2010). Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnol., 8.
Kole, 2013, Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia), BMC Biotechnol., 13, 37, 10.1186/1472-6750-13-37
Serag, 2011, Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells, ACS Nano, 5, 493, 10.1021/nn102344t
Serag, 2011, A functional platform for controlled subcellular distribution of carbon nanotubes, ACS Nano, 5, 9264, 10.1021/nn2035654
Serag, 2012, Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes, RSC Adv., 2, 398, 10.1039/C1RA00760B
Serag, 2012, Spatiotemporal visualization of subcellular dynamics of carbon nanotubes, Nano Lett., 12, 6145, 10.1021/nl3029625
Zhao, 2015, Toxicity and translocation of graphene oxide in Arabidopsis thaliana, Environ. Toxicol. Pharmacol., 39, 145, 10.1016/j.etap.2014.11.014
Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003
Aslani, F., Bagheri, S., Julkapli, N.M., Juraimi, A.S., Hashemi, F.S.G., and Baghdadi, A. (2014). Effects of engineered nanomaterials on plants growth: An overview. Sci. World J., 2014.
Lin, 2008, Uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 42, 5580, 10.1021/es800422x
Lin, 2007, Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016
Dimkpa, 2012, CuO and ZnO nanoparticles: Phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat, J. Nanopart. Res., 14, 1125, 10.1007/s11051-012-1125-9
Lv, 2015, Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize, Environ. Sci. Nano, 2, 68, 10.1039/C4EN00064A
Gomez, 2003, Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles, Langmuir, 19, 1357, 10.1021/la020835i
Harris, 2008, On the formation and extent of uptake of silver nanoparticles by live plants, J. Nanopart. Res., 10, 691, 10.1007/s11051-007-9288-5
Shaheen, 2014, Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc., 18, 356, 10.1016/j.jscs.2013.09.011
Yin, 2011, More than the ions: The effects of silver nanoparticles on Lolium multiflorum, Environ. Sci. Technol., 45, 2360, 10.1021/es103995x
Elsayed, 2013, Phytotoxicity of silver nanoparticles on Vicia faba seedlings, N. Y. Sci. J., 6, 148
Parsons, 2002, Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett., 2, 397, 10.1021/nl015673+
Zhai, 2014, Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar, Environ. Sci. Technol. Lett., 1, 146, 10.1021/ez400202b
Bali, 2010, Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea, J. Nanopart. Res., 12, 3087, 10.1007/s11051-010-9904-7
Arora, 2012, Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea, Plant Growth Regul., 66, 303, 10.1007/s10725-011-9649-z
Wang, 2012, The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety, Metallomics, 4, 1105, 10.1039/c2mt20149f
Schwabe, 2013, Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture, Chemosphere, 91, 512, 10.1016/j.chemosphere.2012.12.025
Rico, 2013, Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains, J. Agric. Food Chem., 61, 11278, 10.1021/jf404046v
Zhang, 2013, Species-Specific toxicity of ceria nanoparticles to Lactuga plants, Nanotoxicology, 9, 1, 10.3109/17435390.2013.855829
Zhang, 2012, Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to Cucumber (Cucumis sativus), Environ. Sci. Technol., 46, 1834, 10.1021/es2027295
Ghosh, 2010, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes, Chemosphere, 81, 1253, 10.1016/j.chemosphere.2010.09.022
Nair, 2011, Uptake of FITC labelled silica nanoparticls and quantum dots by rice seedlings: Effects on seed germination and their potential as biolabels for plants, J. Fluoresc., 21, 2057, 10.1007/s10895-011-0904-5
Navarro, 2012, Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants, J. Hazard. Mater., 211, 427, 10.1016/j.jhazmat.2011.12.012
Kumari, 2009, Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 407, 5243, 10.1016/j.scitotenv.2009.06.024
Botez, 2010, Evidence of the differential biotrasformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants, Environ. Sci. Technol., 44, 7315, 10.1021/es903891g
Ruffini, 2011, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbodensis L. and Zea mays L., J. Nanopart. Res., 13, 2443, 10.1007/s11051-010-0135-8
Atha, 2012, Copper oxide nanoparticle mediated DNA damage in terrestrial plant models, Environ. Sci. Technol., 46, 1819, 10.1021/es202660k
Wang, 2012, Multiwalled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants, J. Nanopart. Res., 14, 841, 10.1007/s11051-012-0841-5
Mondal, 2011, Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect, J. Nanopart. Res., 13, 4519, 10.1007/s11051-011-0406-z
Villagarcia, 2012, Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants, Small, 8, 2328, 10.1002/smll.201102661
Khodakovskaya, 2013, Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community, Small, 12, 115, 10.1002/smll.201201225
Flores, 2014, Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology, Am. J. Plant Sci., 5, 3510, 10.4236/ajps.2014.524367
Anjum, 2014, Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.), Sci. Total Environ., 472, 834, 10.1016/j.scitotenv.2013.11.018
Begum, 2013, Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions, J. Hazard. Mater., 260, 1032, 10.1016/j.jhazmat.2013.06.063
Begum, 2012, Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant, J. Hazard. Mater., 243, 212, 10.1016/j.jhazmat.2012.10.025
Hu, X., Kang, J., Lu, K., Zhou, R., Mu, L., and Zhou, Q. (2014). Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep., 4.
Khodakovskaya, 2012, Carbon nanotubes induce growth enhancement of tobacco cell, ACS Nano, 6, 2128, 10.1021/nn204643g
Ghosh, 2011, Multi-walled carbon nanotubes (MWCNT): Induction of DNA damage in plant and mammalian cells, J. Hazard. Mater., 197, 327, 10.1016/j.jhazmat.2011.09.090
Yan, 2013, Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression, J. Hazard. Mater., 246, 110, 10.1016/j.jhazmat.2012.12.013
Punt, W., Blackmore, S., Nilsson, S., and Le Thomas, A. (1994). Glossary of Pollen and Spore Terminology, LPP Foundation. LPP Contributions Series No.1.
Speranza, 2010, Pd-Nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd (II), Environ. Pollut., 158, 873, 10.1016/j.envpol.2009.09.022
Speranza, 2013, In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release, Environ. Pollut., 179, 258, 10.1016/j.envpol.2013.04.021
Wang, 2013, Trans-generational impact of cerium oxide nanoparticles on tomato plants, Metallomics, 5, 753, 10.1039/c3mt00033h
Chen, 2011, Clathrin-mediated endocytosis: The gateway into plant cells, Curr. Opin. Plant Biol., 14, 674, 10.1016/j.pbi.2011.08.006
Popp, 2005, Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticolar membrane: Permeation of water and uncharged organic compounds, J. Exp. Bot., 56, 2797, 10.1093/jxb/eri272
Kerstiens, 2006, Water transport in plant cuticles: An update, J. Exp. Bot., 57, 2493, 10.1093/jxb/erl017
Lucas, 2006, Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes, Virology, 344, 169, 10.1016/j.virol.2005.09.026
Hawthorne, 2013, Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants, Environ. Sci. Technol., 47, 12539, 10.1021/es4034809
Hawthorne, 2013, Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean), Environ. Sci. Technol., 47, 718, 10.1021/es3041829
Dimkpa, 2013, Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum, Biometals, 26, 913, 10.1007/s10534-013-9667-6
Husen, 2014, Carbon and fullerene nanomaterials in plant system, J. Nanotechnol., 12, 16
Gunsolus, 2013, Toxicity of Engineered Nanoparticles in the Environment, Anal. Chem., 85, 3036, 10.1021/ac303636s
Kuppusamy, P., Yusoff, M.M., and Govindan, N. (2015). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J.
Auffan, 2014, An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems, Sci. Rep., 4, 5608, 10.1038/srep05608
Cleveland, 2012, Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products, Sci. Total Environ., 421–422, 267, 10.1016/j.scitotenv.2012.01.025
Herlekar, M., Barve, S., and Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. J. Nanopart., 2014.
Petersen, 2014, Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements, Environ. Sci. Technol., 48, 4226, 10.1021/es4052999