Pelargonium sidoides extract mediates nephrotoxicity through mitochondrial malfunction and cytoskeleton destabilization

Toxicological Research - Tập 39 - Trang 601-609 - 2023
Ju Young Lee1, JuKyung Lee2, Sung Ho Lee3, Jeong Ho Hwang1,4, Han Na Suh1,4
1Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
2Department of Medical IT Convergence, Kumoh National Institute of Technology, Gumi, Republic of Korea
3WooGene B&G Co.,Ltd. , Hwaseong, Republic of Korea
4Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeongeup, Republic of Korea

Tóm tắt

We investigated the cytotoxic effect of Pelargonium sidoides extract on Madin–Darby canine kidney (MDCK) cells. P. sidoides extract decreased the cell viability in a dose dependent manner (> 0.2%). The extract of P. sidoides decreased the mitochondrial action potential, increased the number of reactive oxygen species (ROS) inside the cell, and caused nicotinamide adenine dinucleotide hydride (NADH) to be released, all of which are signs of mitochondrial dysfunction. The results of unbiased mRNA sequencing showed that 0.3% P. sidoides extract upregulates the apoptosis-related gene (BBC3). This finding was supported by immunoblot analysis of apoptosis signal pathways, which included Bcl-2, Bax, cytochrome C (CytC), cleaved caspase 3 (CC3), cleaved caspase 7 (CC7), cleaved caspase 9 (CC9) and cleaved PARP (CP). It is interesting to note that the elevated levels of Bax, CytC, CC3, CC7, and CC9, as well as CP, were suppressed by N-acetyl-L-cysteine (NAC) pretreatment, which points to ROS-mediated apoptosis. The small GTPases, RhoA, and Rac1/cdc42-GTP-bound active form were all lowered when P. sidoides extract was used. Also, RhoA-related cytoskeleton signals (ROCK, p-LIMK1/2, p-cofilin) and Rac1/cdc42-related signals (N-WASP, WAVE-2) were inhibited by P. sidoides extract. NAC or RhoA/Rac1/cdc42 activator pretreatment reduced P. sidoides extract-induced actin destabilization. In this work, P. sidoides extract promotes apoptosis by causing mitochondrial dysfunction and cytoskeleton disassembly.

Tài liệu tham khảo

Matthys H, Eisebitt R, Seith B, Heger M (2003) Efficacy and safety of an extract of Pelargonium sidoides (EPs 7630) in adults with acute bronchitis. A randomised, double-blind, placebo-controlled trial. Phytomedicine 10(Suppl 4):7–17. https://doi.org/10.1078/1433-187x-00308 Bladt S, Wagner H (2007) From the Zulu medicine to the european phytomedicine Umckaloabo. Phytomedicine 6:2–4. https://doi.org/10.1016/j.phymed.2006.11.030 Dubash AD, Guilluy C, Srougi MC, Boulter E, Burridge K, Garcia-Mata R (2011) The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS ONE 6:e17380. https://doi.org/10.1371/journal.pone.0017380 Schnitzler P, Schneider S, Stintzing FC, Carle R, Reichling J (2008) Efficacy of an aqueous Pelargonium sidoides extract against herpesvirus. Phytomedicine 15:1108–1116. https://doi.org/10.1016/j.phymed.2008.06.009 Wittschier N, Faller G, Hensel A (2007) An extract of Pelargonium sidoides (EPs 7630) inhibits in situ adhesion of Helicobacter pylori to human stomach. Phytomedicine 14:285–288. https://doi.org/10.1016/j.phymed.2006.12.008 Conrad A, Hansmann C, Engels I, Daschner FD, Frank U (2007) Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro. Phytomedicine 6:46–51. https://doi.org/10.1016/j.phymed.2006.11.016 Kolodziej H, Kayser O, Radtke OA, Kiderlen AF, Koch E (2003) Pharmacological profile of extracts of Pelargonium sidoides and their constituents. Phytomedicine 4:18–24. https://doi.org/10.1078/1433-187x-00307 Chuchalin AG, Berman B, Lehmacher W (2005) Treatment of acute bronchitis in adults with a pelargonium sidoides preparation (EPs 7630): a randomized, double-blind, placebo-controlled trial. Explore (NY) 1:437–445. https://doi.org/10.1016/j.explore.2005.08.009 Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G (2003) Drug-induced Fanconi’s syndrome. Am J Kidney Dis 41:292–309. https://doi.org/10.1053/ajkd.2003.50037 Perazella MA (2009) Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4:1275–1283. https://doi.org/10.2215/CJN.02050309 Dekant W (1996) Biotransformation and renal processing of nephrotoxic agents. Arch Toxicol Suppl 18:163–172. https://doi.org/10.1007/978-3-642-61105-6_17 Li Y, Zheng Y, Zhang K, Ying JY, Zink D (2012) Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generated in vitro. Nanotoxicology 6:121–133. https://doi.org/10.3109/17435390.2011.562326 Lin Z, Will Y (2012) Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 126:114–127. https://doi.org/10.1093/toxsci/kfr339 Schoetz K, Erdelmeier C, Germer S, Hauer H (2008) A detailed view on the constituents of EPs 7630. Planta Med 74:667–674. https://doi.org/10.1055/s-2008-1074515 Lee J, Suh HN, Ahn S, Park HB, Lee JY, Kim HJ, Kim SH (2022) Disposable electrocatalytic sensor for whole blood NADH monitoring. Sci Rep 12:16716. https://doi.org/10.1038/s41598-022-20995-x Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162–169. https://doi.org/10.1002/cyto.a.20033 Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 rho by deamidation of glutamine. Nature 387:729–733. https://doi.org/10.1038/42743 Lerm M, Selzer J, Hoffmeyer A, Rapp UR, Aktories K, Schmidt G (1999) Deamidation of Cdc42 and rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect Immun 67:496–503. https://doi.org/10.1128/IAI.67.2.496-503.1999 Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729. https://doi.org/10.1038/42735 Baars EW, Belt-van Zoen E, Breitkreuz T, Martin D, Matthes H, von Schoen-Angerer T, Soldner G, Vagedes J, van Wietmarschen H, Patijn O, Willcox M, von Flotow P, Teut M, von Ammon K, Thangavelu M, Wolf U, Hummelsberger J, Nicolai T, Hartemann P, Szoke H, McIntyre M, van der Werf ET, Huber R (2020) Corrigendum to “The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of Health Concepts, Prevention, and Treatment Strategies.” Evid Based Complement Alternat Med 2020:7089287. https://doi.org/10.1155/2020/7089287 Brendler T, van Wyk BE (2008) A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol 119:420–433. https://doi.org/10.1016/j.jep.2008.07.037 Bao Y, Gao Y, Koch E, Pan X, Jin Y, Cui X (2015) Evaluation of pharmacodynamic activities of EPs(R) 7630, a special extract from roots of Pelargonium sidoides, in animals models of cough, secretolytic activity and acute bronchitis. Phytomedicine 22:504–509. https://doi.org/10.1016/j.phymed.2015.03.004 Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK (2020) Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 583:122–126. https://doi.org/10.1038/s41586-020-2337-2 Katsyuba E, Auwerx J (2017) Modulating NAD(+) metabolism, from bench to bedside. EMBO J 36:2670–2683. https://doi.org/10.15252/embj.201797135 Xiao W, Loscalzo J (2020) Metabolic responses to reductive stress. Antioxid Redox Signal 32:1330–1347. https://doi.org/10.1089/ars.2019.7803 Zhao Y, Zhang Z, Zou Y, Yang Y (2018) Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with genetically encoded fluorescent sensors. Antioxid Redox Signal 28:213–229. https://doi.org/10.1089/ars.2017.7226 Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B, Blanc J, Breton M, Decaux JF, Lavery GG, Baczko I, Zoll J, Garnier A, Li Z, Brenner C, Mericskay M (2018) Nicotinamide Riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137:2256–2273. https://doi.org/10.1161/CIRCULATIONAHA.116.026099 Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR, Bruce JE, Tian R (2016) Normalization of NAD + redox balance as a therapy for heart failure. Circulation 134:883–894. https://doi.org/10.1161/CIRCULATIONAHA.116.022495 Yoshino J, Baur JA, Imai SI (2018) NAD(+) intermediates: the Biology and therapeutic potential of NMN and NR. Cell Metab 27:513–528. https://doi.org/10.1016/j.cmet.2017.11.002 Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798 Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922. https://doi.org/10.1073/pnas.90.17.7915 Goel A, Chhabra R, Ahmad S, Prasad AK, Parmar VS, Ghosh B, Saini N (2012) DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach. Cell Death Dis 3:e402. https://doi.org/10.1038/cddis.2012.141 Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809. https://doi.org/10.1038/31729 Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9:364–370. https://doi.org/10.1016/s0962-8924(99)01619-0 Clark EA, King WG, Brugge JS, Symons M, Hynes RO (1998) Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 142:573–586. https://doi.org/10.1083/jcb.142.2.573 Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a rho-associated coiled-coil forming protein kinase, works downstream of rho and induces focal adhesions. FEBS Lett 404:118–124. https://doi.org/10.1016/s0014-5793(97)00107-5 Tomasevic N, Jia Z, Russell A, Fujii T, Hartman JJ, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, nck, and PI(4,5)P2. Biochemistry 46:3494–3502. https://doi.org/10.1021/bi062152y Chen XM, Huang BQ, Splinter PL, Orth JD, Billadeau DD, McNiven MA, LaRusso NF (2004) Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum. Infect Immun 72:3011–3021. https://doi.org/10.1128/IAI.72.5.3011-3021.2004